Science, asked by parthdayma15, 4 months ago

plz send me the correct answer​

Attachments:

Answers

Answered by itzPapaKaHelicopter
1

\huge\mathfrak\green{☟ \:  \:  \: answer \:  \:  \:  \: ✎}

Let T be the tension in the string and a be the common acceleration in the direction shown in Fig.

The equations of motion of two blocks are :

50g \: sin \: 30° - T = 50a

T - 30g \: sin \: 60° = 30a

Adding \: (i) \: and \: (ii)  , \: we \: get

50g \: sin \: 30° - 30g \: sin \: 60° = 80a

50 \times 10 \times  \frac{1}{2}  - 30 \times 10 \frac{ \sqrt{3} }{2}  = 80a

a =  \frac{250 - 150 \times 1.732}{80}  =  \frac{ - 9.8}{80}  =  - 0

1225/{s}^{2}

Negative Sign indicates that 50 kg block will slide up the plane instead of sliding down

From

(i)  ,T = 50g \: sin \: 30° - 50a \: T = 50 \times 10 \times  \frac{1}{2}  - 50( - 0.1225)

 = 256.12n

 \\  \\  \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸} \\  and\\ \sf \colorbox{lightgreen} {\red❤ANSWER ᵇʸ ᶠˡⁱʳᵗʸ ᵇᵒʸ}

Attachments:
Answered by kinzal
6

Answer :-

  • The tension in the string = 256 N
  • Acceleration of the two blocks = 0.1225

Explanation :-

  • Now first of all we find FBD of this diagram
  • { for the first block }
  • Mass of first block = 50 kg
  • angle = 30°
  • g = gravitational force = 9.8 m/s² = 10 m/s² ( nearly )
  • a = ?
  • T = ?

  • hence , FBD of first block
  • mg sin∅ - T = m a
  • 50 × g sin∅ - T = 50 × a
  • 50 g sin 30° - T = 50 a _____( 1 )

  • Now for the second block
  • Mass of the second block = 30
  • angle = 60°
  • g = gravitational force = 9.8 m/s² = 10 m/s² ( nearly )
  • a = ?
  • T = ?
  • T - m g sin ∅ = ma
  • T - 30 g sin 60° = 30 a _____( 2 )

  • Now eliminate to these equations no. (1) and (2)
  • hence we get =
  • 50 g sin 30° - 30 g sin 60° = 80 a

50 \:  g \times   \frac{1}{2}   - 30g \times  \frac{ \sqrt{3} }{2}  = 80a \\  \\ 25 \: g - 15 \sqrt{3} g = 80a \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ 25g - 25.98g = 80a \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ 0.98g = 80a  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\0.98 \times 10 = 80a \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ a =  \frac{0.98 \times 10}{80}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\{ \pink{ a = 0.1225 }}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now for tension :-

  • we put the value of acceleration in eq. (1) or (2)
  • hence

50g  \times  \sin30 \degree  -  ᴛ = \:  -   \: 50a \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  50 \times 10 \times  \frac{1}{2}  - ᴛ =  - 50 \times 0.1225 \\  \\  250 - ᴛ =  - 6.15 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ 250 + 6.15 = ᴛ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ 256.15 = ᴛ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ ᴀɴsᴡᴇʀ  ɴᴇᴀʀʟʏ \:  \:  \:  \:  \:  \\  \\  \pink{ᴛ = 256}

Similar questions