Plz send me the trigonometry important formulas (10 th class).
Answers
Answered by
25
Complementary Ratios :
Quadrant I
- sin(π/2−θ) = cos θ
- cos(π/2−θ) = sin θ
- tan(π/2−θ) = cot θ
- cot(π/2−θ) = tan θ
- sec(π/2−θ) = cosec θ
- cosec(π/2−θ) = sec θ
Quadrant II
- sin(π−θ) = sin θ
- cos(π−θ) = -cos θ
- tan(π−θ) = -tan θ
- cot(π−θ) = – cot θ
- sec(π−θ) = -sec θ
- cosec(π−θ) = cosec θ
Quadrant III
- sin(π+ θ) = – sin θ
- cos(π+ θ) = – cos θ
- tan(π+ θ) = tan θ
- cot(π+ θ) = cot θ
- sec(π+ θ) = -sec θ
- cosec(π+ θ) = -cosec θ
Quadrant IV
- sin(2π− θ) = – sin θ
- cos(2π− θ) = cos θ
- tan(2π− θ) = – tan θ
- cot(2π− θ) = – cot θ
- sec(2π− θ) = sec θ
- cosec(2π− θ) = -cosec θ
Sum and Difference of Two Angles :
- sin (A + B) = sin A cos B + cos A sin B
- sin (A − B) = sin A cos B – cos A sin B
- cos (A + B) = cos A cos B – sin A sin B
- cos (A – B) = cos A cos B + sin A sin B
- tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]
- tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]
Double Angle Formulas :
- sin2A = 2sinA cosA = [2tan A + (1+tan2A)]
- cos2A = cos2A–sin2A = 1–2sin2A = 2cos2A–1= [(1-tan2A)/(1+tan2A)]
- tan 2A = (2 tan A)/(1-tan2A)
- Thrice of Angle Formulas
- sin3A = 3sinA – 4sin3A
- cos3A = 4cos3A – 3cosA
- tan3A = [3tanA–tan3A]/[1−3tan2A]
Similar questions