Math, asked by kumarutkarsh19774, 10 months ago

plz send the solution ​

Attachments:

Answers

Answered by spandhana238
2

Answer:

hope this is helpful....

Attachments:
Answered by Cosmique
4

 \underline{ \underline{\huge{ \bf{question}}}}

If the zeroes of polynomial

\mathrm{f(x) =  {x}^{3}  - 12 {x}^{2} + 39x + k }

are in AP, find the value of 'k'.

 \underline{\underline{ \huge{ \bf{solution}}}}

Let,

zeroes of f (x) be

a - d , a , a + d

then,

\boxed{ \tt{sum \: of \: zeroes \: of \: cubic \: polynomial =  \frac{ - coefficient \: of \:  {x}^{2} }{coeffiecient \: of \:  {x}^{3} } }}

so,

\mathrm{a - d + a + a + d =  \frac{ - ( - 12)}{1} } \\  \\  \mathrm{3a =  12} \\  \\   \red{\mathrm{a = 4}}

also,

 \boxed{ \tt{(a - d)(a) + (a - d)(a + d) + (a)(a + d) =  \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{3} } }}

so,

 \mathrm{ {a}^{2} - ad +  {a}^{2}  -  {d}^{2}   +  {a}^{2} + ad = 39 } \\  \\  \mathrm{3 {a}^{2} -  {d}^{2} = 39  } \\  \\  \mathrm{3 {(4)}^{2} -  {d}^{2}   = 39} \\  \\  \mathrm{48 -  {d}^{2} = 39 } \\  \\   \red{ \mathrm{d = 3}}

Again,

\boxed{\tt{product \: of \: zeroes =  \frac{ - constant \: term}{coefficient \: of \:  {x}^{3}}} }

so,

\mathrm{(a)(a - d)(a + d) =  \frac{ - k}{1} } \\  \\  \mathrm{a( {a}^{2} -  {d}^{2} )  =  - k}

putting values

\mathrm{4( {4}^{2} - {3}^{2} ) =  - k  } \\  \\  \mathrm{4(16 - 9) =  - k} \\  \\  \boxed{ \red{ \bf{k =  - 28}}}

Similar questions