Math, asked by pratikshangandhi35, 10 months ago

plz slove it its very urgent​

Attachments:

Answers

Answered by BrainlyPopularman
5

Question :

▪︎ Gives that   { \bold { \:  \dfrac{ {a}^{3}  + 3a {b}^{2} }{ {b}^{3}  + 3 {a}^{2}b } =  \dfrac{63}{62}  \: }} , Using componendo and dividendo, find a : b

 \\

ANSWER :

a : b = 6 : 4

EXPLANATION :

GIVEN :

▪︎   \implies \:  \dfrac{ {a}^{3}  + 3a {b}^{2} }{ {b}^{3}  + 3 {a}^{2}b } =  \dfrac{63}{62}  \\

TO FIND :

▪︎ a : b = ?

SOLUTION :

Componendo and Dividendo (C & D) :

If a fraction is (a/b) = (c/d) , Now Applying (C & D) rule –

 \\ \implies \:  \dfrac{a + b}{a - b } =  \dfrac{c + d}{c - d}  \\

▪︎ Now Apply (C & D) rule in given equation –

 \\ \implies \:  \dfrac{ {a}^{3}  + 3a {b}^{2}  +  {b}^{3}  + 3 {a}^{2}b }{ {a}^{3}  + 3a {b}^{2}   -  ( {b}^{3}    +   3 {a}^{2}b)} =  \dfrac{63 + 62}{1}  \\

 \\  \implies \:  \dfrac{ {a}^{3}  + 3a {b}^{2}  +  {b}^{3}  + 3 {a}^{2}b }{ {a}^{3}  + 3a {b}^{2}   -   {b}^{3}     -    3 {a}^{2}b} =  \dfrac{125}{1} \\

  \\ \implies \:  \dfrac{  {(a + b)}^{3} }{  {(a - b)}^{3} } =  \dfrac{ {(5)}^{3} }{1} \\

▪︎ We should write this as –

 \\ \implies \:  \dfrac{  {a + b}}{  {a - b}} =  \dfrac{ {5 }}{1}  \\

▪︎ Now Apply (C & D) rule

 \\ \implies \:  \dfrac{  {(a + b) + (a - b)}}{ (a + b) -  (a - b)} =  \dfrac{ {5  + 1}}{5 - 1} \\

 \\ \implies \:  \dfrac{  {2a}}{2b} =  \dfrac{ {6}}{4} \\

 \\ \implies \: { \boxed{ \bold{ \dfrac{  {a}}{b} =  \dfrac{ {6}}{4}  }}} \\

Hence, a : b = 6 : 4

 \\

USED FORMULA :

 \\

(1) (a + b)³ = a³ + b³ + 3a²b + 3ab²

 \\

(2) (a - b)³ = a³ - b³ - 3a²b + 3ab²

Similar questions