Math, asked by manvisharma25, 3 days ago

plz slove the question asap!!​

Attachments:

Answers

Answered by Anonymous
5

Answer:

2.2 33333 . . . . and 2.233 are two rational numbers between 2.23 23 23 . . . and 2.24 24 24 . . .

Step-by-step explanation:

We know that possible decimal expansions of rational numbers are ( non terminating but repeating ), ( non terminating ) and ( non repeating ). This means we can choose any number whose decimal expansion is either repeating or terminating.

So the rational numbers between 2.23 23 23. . . and 2.24 24 24 . . . are ∞. You can choose any two as per the requirement.

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given rational numbers are

\red{\boxed{ \rm{2. \overline{23} \:  \: and \:  \:2. \overline{24} }}}

Let we first convert these decimal form in to fraction form

Consider,

\rm :\longmapsto\:2. \overline{23}

Let we assume that

\rm :\longmapsto\:x \:  =  \: 2. \overline{23} -  -  - (1)

Multiply by 100 on both sides, we get

\rm :\longmapsto\:100x = 223. \overline{23} -  -  - (2)

On Subtracting equation (1) from equation (2), we get

\rm :\longmapsto \: 99x = 221

\bf\implies \:x = \dfrac{221}{99}

Hence,

\red{\boxed{ \bf{ \:  \: 2. \overline{23} = \dfrac{221}{99} \: }}}

Now,

Consider,

\rm :\longmapsto\:2. \overline{24}

Let we assume that,

\rm :\longmapsto\:y \:  =  \: 2. \overline{24} -  -  - (1)

Multiply by 100 on both sides, we get

\rm :\longmapsto\:100y \:  =  \: 224. \overline{24} -  -  - (2)

On Subtracting equation (1) from equation (2), we get

\rm :\longmapsto\:99y \:  =  \: 222

\bf\implies \:y = \dfrac{222}{99}

Hence,

\red{\boxed{ \bf{ \:  \: 2. \overline{24} = \dfrac{222}{99} \: }}}

Now, we have to find two rational number between

\rm :\longmapsto\:\dfrac{221}{99}  \:  \: and \:  \: \dfrac{222}{99}

We use arithmetic mean method to find rational number.

We know,

If a and b are two numbers, then a rational number between a and b

\rm \:  =  \: \dfrac{a + b}{2}

So,

\rm :\longmapsto\:A \: rational \: number \: between \: \dfrac{221}{99}  \:  \: and \:  \: \dfrac{222}{99}

\rm \:  =  \: \dfrac{1}{2} \bigg(\dfrac{221}{99}  + \dfrac{222}{99} \bigg)

\rm \:  =  \: \dfrac{1}{2} \bigg(\dfrac{221 + 222}{99}  \bigg)

\rm \:  =  \: \dfrac{1}{2} \bigg(\dfrac{443}{99}  \bigg)

\rm \:  =  \: \dfrac{443}{198}

Now, other rational number

\rm :\longmapsto\:A \: rational \: number \: between \: \dfrac{221}{99}  \:  \: and \:  \: \dfrac{443}{198}

\rm \:  =  \: \dfrac{1}{2} \bigg(\dfrac{221}{99}  + \dfrac{443}{198} \bigg)

\rm \:  =  \: \dfrac{1}{2} \bigg(\dfrac{442 + 443}{198} \bigg)

\rm \:  =  \: \dfrac{1}{2} \bigg(\dfrac{885}{198} \bigg)

\rm \:  =  \: \dfrac{885}{396}

Hence,

 \boxed{\rm :\longmapsto\:2 \: rational \: number \: between \: \dfrac{221}{99}  \:  \: and \:  \: \dfrac{222}{99}}  \\ \\are \\  \\  \boxed{ \bf{ \dfrac{443}{198}  \: and \: \dfrac{885}{396}}}

OR

In decimal form

 \boxed{\rm :\longmapsto\:2 \: rational \: number \: between \: 2. \overline{23}  \:  \: and \:  \: 2. \overline{24}}  \\ \\are \\  \\  \boxed{ \bf{  \: 2. 2\overline{37}  \: and \:2. 23\overline{48}}}

Similar questions