Math, asked by amishaverma2222, 5 months ago

plz sol... my question
(1-x*x) dy/dx +xy = xy*y how to solve this??

Answers

Answered by shalini1oakwood
0

Answer:

(1+x)  

dx

dy

​  

−xy=1−x

dx

dy

​  

+(  

1+x

−x

​  

)y=  

1+x

1−x

​  

 

∫pdx=∫  

1+x

−x

​  

=−∫  

1+x

1+x−1

​  

dx

=−∫1−  

1+x

1

​  

dx

=−x+log∣1+x∣dx

I.Fe  

∫pdx

=e  

log(1+x)−x

=  

e  

x

 

1+x

​  

 

4.5y.  

e  

x

 

1+x

​  

=∫  

e  

x

 

1−x

​  

 

y  

e  

x

 

(1+x)

​  

=∫e  

−x

(1−x)

y(1+x)=e  

x

c  

−x

(+x)

y(1+x)=x

Step-by-step explanation:

Answered by prathameshvedant
0

Answer:

If the question is like this :-

Solution (1) :-

dx/dy=(1-x)/y

or 1/y.dy = 1/(1-x).dx

logy = -log (1-x) +logC . = log C/(1-x)

or y = C/(1-x)

y.(1-x) = C , Answer.

If the question is like this :-

Solution (2nd) :-

dx/dy = 1 - ( x/y) = (y-x)/y

or dy/dx= y/(y-x)…………(1)

Let y = vx

dy/dx= v.1+x.dv/dx…………..(2)

On putting dy/dx = v+x.dv/dx from eq.(2)

v+x.dv/dx= vx/(vx-x) = v/(v-1)

x.dv/dx = v/(v-1) -v =(v-v^2+v)/(v-1)

-(v-1)/(v^2-2v).dv = 1/x.dx.

(1/2).[(2v-2)/(v^2–2v).dv] = -1/x.dx

(1/2).log (v^2–2v) = -log x +log C = log C/x

log (v^2–2v)^1/2 = log C/x

ot (v^2–2v)^1/2 = C/x

On putting v= y/x

or ( y^2/x^2 - 2y/x)^1/2 = C/x

or [(y^2–2xy)^1/2]/x = C/x

or (y^2–2xy)^1/2 = C.

or y^2–2xy = C^2

or y^2 -2xy = k . Answer

Similar questions