Physics, asked by Anonymous, 3 months ago

plz solve 2nd question ​

Attachments:

Anonymous: plz try to answer my question if any one knows it
HèrøSk: hello Your inbox is working?
HèrøSk: okay i got it. Thank you✌️

Answers

Answered by shadowsabers03
20

Given that the velocity of the particle varies with displacement as,

\sf{\longrightarrow v=\sqrt{9+4x}}

\sf{\longrightarrow v^2=9+4x\quad\quad\dots(1)}

\sf{\longrightarrow x=\dfrac{v^2-9}{4}}

Differentiating wrt \sf{v,}

\sf{\longrightarrow\dfrac{dx}{dv}=\dfrac{v}{2 }}

or,

\sf{\longrightarrow\dfrac{\left(\dfrac{dx}{dt}\right)}{\left(\dfrac{dv}{dt}\right)}=\dfrac{v}{2}}

\sf{\longrightarrow\dfrac{v}{a}=\dfrac{v}{2}}

\sf{\longrightarrow a=2\ m\,s^{-2} }

Note that acceleration is independent of time. So we can make use of kinematic equations here.

By third equation of motion,

\sf{\longrightarrow v^2=u^2+2ax}

\sf{\longrightarrow v^2=u^2+4x\quad\quad\dots(2)}

Comparing (1) and (2) we get,

\sf{\longrightarrow u=3\ m\,s^{-1}}

Then by second equation of motion,

\sf{\longrightarrow x=ut+\dfrac{1}{2}\,at^2}

\sf{\longrightarrow x=t^2+3t }

Differentiating wrt \sf{t} we get,

\sf{\longrightarrow dx=(2t+3)\ dt\quad\quad\dots(3) }

Hence the work done by all forces on the particle will be,

\displaystyle\sf{\longrightarrow W=\int\limits_0^xF\ dx}

\displaystyle\sf{\longrightarrow W=\int\limits_0^xma\ dx}

Taking \sf{m=2\ kg} and \sf{a=2\ m\,s^{-2},}

\displaystyle\sf{\longrightarrow W=4\int\limits_0^xdx}

From (3),

\displaystyle\sf{\longrightarrow W=4\int\limits_0^t(2t+3)\ dt}

\displaystyle\sf{\longrightarrow W=4\left[\left[t^2\right]_0^t+3\big[t\big]_0^t\right]}

\displaystyle\sf{\longrightarrow W=4t^2+12t}

(i) At \sf{t=2\ s,}

\displaystyle\sf{\longrightarrow W=4(2)^2+12(2)}

\displaystyle\sf{\longrightarrow\underline{\underline{W=40\ J}}}

Hence (d) is the answer.

(ii) Average power is given by,

\sf{\longrightarrow P_{av}=\dfrac{W}{t}}

\sf{\longrightarrow P_{av}=\dfrac{4t^2+12t}{t} }

\sf{\longrightarrow P_{av}=4t+12}

Instαntaneous power is given by,

\sf{\longrightarrow P_{in}=\dfrac{dW}{dt}}

\sf{\longrightarrow P_{in}=\dfrac{d}{dt}\left[4t^2+12t\right]}

\sf{\longrightarrow P_{in}=8t+12}

We need to find the time at which,

\sf{\longrightarrow P_{av}=\dfrac{3}{4}\,P_{in}}

\sf{\longrightarrow 4t+12=\dfrac{3}{4}\left(8t+12\right)}

\sf{\longrightarrow 4t+12=6t+9}

\sf{\longrightarrow\underline{\underline{t=1.5\ s}}}

Hence (a) is the answer.


amansharma264: Awesome
Anonymous: Superb :)
Anonymous: but plz try to do with out derivation
Anonymous: i mean differentiating
BrainlyIAS: Superb :-)
assingh: Very well explained! Marvellous answer!
Similar questions