English, asked by brain627, 5 months ago

plz solve ................ ​

Attachments:

Answers

Answered by BrainlyEmpire
147

Hey there!

Answer:

\int \frac{1}{1 - tanx} .dx\\ \\= \frac{1}{1 - \frac{sinx}{cosx}} \\ \\ = \frac{1}{\frac{cosx - sinx}{cosx}} \\ \\ = \frac{cosx}{cosx - sinx} \\ \\ Multiply\: and\: divide \:by \:2\\ \\= \frac{2cosx}{2(cosx - sinx)} \\ \\ = \frac{cosx + cosx}{2(cosx - sinx)}\\ \\ Now\: adding\: and\: subtracting \:sinx \:to \:num:\\ \\= \frac{cosx + cosx + sinx - sinx}{2(cosx - sinx)} \\ \\ = \frac{(cosx + sinx) + (-cosx - sinx)}{2(cosx - sinx)}\\ \\ = \frac{1}{2}.\frac{(cosx + sinx)}{(cosx - sinx)} + \frac{1}{2}.\frac{(cosx - sinx)}{(cosx - sinx)}\\ \\ = \frac{1}{2}. (\frac{cosx + sinx}{cosx - sinx}) + \frac{1}{2}\\ \\ Now \:put \:cosx\: - sin\:x \:= \:t\\ \\ (-sinx - cosx)dx = dt\\ \\ -(cosx + sinx)dx = dt\\ \\ (cosx + sinx)dx = -dt\\ \\ Now,\: Integration\\ \\ = -\frac{1}{2} \int \frac{dt}{t} + \frac{1}{2} \int 1.dx\\ \\ = -\frac{1}{2} log |t| + \frac{x}{2} \\ \\ = -\frac{1}{2} log | cosx - sinx | + \frac{1}{2} x + C

#Be Brainly.

Answered by chocolate096
5

Explanation:

Hey there!

Answer:

\begin{gathered}\int \frac{1}{1 - tanx} .dx\\ \\= \frac{1}{1 - \frac{sinx}{cosx}} \\ \\ = \frac{1}{\frac{cosx - sinx}{cosx}} \\ \\ = \frac{cosx}{cosx - sinx} \\ \\ Multiply\: and\: divide \:by \:2\\ \\= \frac{2cosx}{2(cosx - sinx)} \\ \\ = \frac{cosx + cosx}{2(cosx - sinx)}\\ \\ Now\: adding\: and\: subtracting \:sinx \:to \:num:\\ \\= \frac{cosx + cosx + sinx - sinx}{2(cosx - sinx)} \\ \\ = \frac{(cosx + sinx) + (-cosx - sinx)}{2(cosx - sinx)}\\ \\ = \frac{1}{2}.\frac{(cosx + sinx)}{(cosx - sinx)} + \frac{1}{2}.\frac{(cosx - sinx)}{(cosx - sinx)}\\ \\ = \frac{1}{2}. (\frac{cosx + sinx}{cosx - sinx}) + \frac{1}{2}\\ \\ Now \:put \:cosx\: - sin\:x \:= \:t\\ \\ (-sinx - cosx)dx = dt\\ \\ -(cosx + sinx)dx = dt\\ \\ (cosx + sinx)dx = -dt\\ \\ Now,\: Integration\\ \\ = -\frac{1}{2} \int \frac{dt}{t} + \frac{1}{2} \int 1.dx\\ \\ = -\frac{1}{2} log |t| + \frac{x}{2} \\ \\ = -\frac{1}{2} log | cosx - sinx | + \frac{1}{2} x + C\end{gathered}

1−tanx

1

.dx

=

1−

cosx

sinx

1

=

cosx

cosx−sinx

1

=

cosx−sinx

cosx

Multiplyanddivideby2

=

2(cosx−sinx)

2cosx

=

2(cosx−sinx)

cosx+cosx

Nowaddingandsubtractingsinxtonum:

=

2(cosx−sinx)

cosx+cosx+sinx−sinx

=

2(cosx−sinx)

(cosx+sinx)+(−cosx−sinx)

=

2

1

.

(cosx−sinx)

(cosx+sinx)

+

2

1

.

(cosx−sinx)

(cosx−sinx)

=

2

1

.(

cosx−sinx

cosx+sinx

)+

2

1

Nowputcosx−sinx=t

(−sinx−cosx)dx=dt

−(cosx+sinx)dx=dt

(cosx+sinx)dx=−dt

Now,Integration

=−

2

1

t

dt

+

2

1

∫1.dx

=−

2

1

log∣t∣+

2

x

=−

2

1

log∣cosx−sinx∣+

2

1

x+C

#Be Brainly.

Similar questions