Math, asked by amitpatilvg, 10 months ago

Plz solve 4 and 5 problem ....... pls reply fast its an urgent

Attachments:

Answers

Answered by Sharad001
80

Question :-

 \rm The \:  Curved \:  surface \:  area \:  of  \: a \:  cylinder  \:  is  \:  \\  \rm 4400  \:  {cm}^{2}    \: and \:  the \:  circumference \:  of  \: its \:  \\ \rm  base \:  is  \: 220 \:  cm  \: .Find \:  the \:  volume  \: of  \: cylinder .</p><p>

Answer :-

\to \boxed{ \rm \:volume \: (  v )= 77000 \:  {cm}^{3} } \:

To Find :-

→ Volume of cylinder .

Used Formula :-

  \boxed{\star} \rm \:  circumfrance \: of \: cylinder = 2 \pi r \\  \\   \boxed{\star} \rm \:  volume \: of \: cylinder =  \pi \:  {r}^{2} h \\  \\   \boxed{\star} \rm \:  curved \: surface \: area \: of \: cylinder \\ \rm  \:  \:  \:  \: \:  \:  \:   = 2 \pi \: r \: h

Step - by - step explanation :-

Given that -

→ Curved surface area ( C.S.A) = 4400 cm²

→ circumference of its base = 220 cm ,

→ Volume (v) = ? ,

Now ,

  \mapsto \rm \:  circumfrance \: of \: its \: base = 220 \\  \\  \mapsto \rm \: 2 \pi \: r = 220 \\  \\  \mapsto \rm \:   r =  \frac{110}{ \pi}  \:  \:  \because \:  \pi =  \frac{22}{7}  \\  \\  \mapsto \rm \:  r =  \frac{110 \times 7}{22}  \\  \\  \mapsto \rm \:  r = 5 \times 7 \\  \\  \mapsto \boxed{ \rm r = 35 \: cm} \\  \\ \bf now \\  \\  \mapsto \rm \:  ( C.S.A) = 4400 \:  {cm}^{2}  \\  \\  \mapsto \rm \:  2 \times  \pi \times r \times h = 4400 \\  \:  \\  \mapsto \rm \:  h =  \frac{4400}{2 \times  \pi \times r}  \\   \:  \:  \:  \:  \: \boxed{  \because \rm \: r = 35 \:  \: and \:  \pi =  \frac{22}{7} } \\  \\  \mapsto \rm h =  \frac{4400 \times 7}{2 \times 22 \times 35}  \\  \\  \mapsto \rm \:  h =  \frac{200}{2 \times 5}  \\  \\  \mapsto \boxed{ \:  \rm h = 20} \\  \\  \sf \: and \: now \\  \\  \to \rm voume \: of \: cylinder \: (v) =  \pi \:  {r}^{2}  \: h \\  \\  \to \rm \:  v =   \frac{22}{7}  \times 35 \times 35 \times 20 \\  \\  \to \boxed{ \rm \:  v = 77000}

Hence ,volume of cylinder is 77000 cm³

Answered by shivikasrivastava482
0

Answer:

➤Question :-

\begin{gathered} \rm The \: Curved \: surface \: area \: of \: a \: cylinder \: is \: \\ \rm 4400 \: {cm}^{2} \: and \: the \: circumference \: of \: its \: \\ \rm base \: is \: 220 \: cm \: .Find \: the \: volume \: of \: cylinder . < /p > < p > \end{gathered}

TheCurvedsurfaceareaofacylinderis

4400cm

2

andthecircumferenceofits

baseis220cm.Findthevolumeofcylinder.</p><p>

➤Answer :-

\to \boxed{ \rm \:volume \: ( v )= 77000 \: {cm}^{3} } \:→

volume(v)=77000cm

3

➤To Find :-

→ Volume of cylinder .

➤Used Formula :-

\begin{gathered} \boxed{\star} \rm \: circumfrance \: of \: cylinder = 2 \pi r \\ \\ \boxed{\star} \rm \: volume \: of \: cylinder = \pi \: {r}^{2} h \\ \\ \boxed{\star} \rm \: curved \: surface \: area \: of \: cylinder \\ \rm \: \: \: \: \: \: \: = 2 \pi \: r \: h\end{gathered}

circumfranceofcylinder=2πr

volumeofcylinder=πr

2

h

curvedsurfaceareaofcylinder

=2πrh

➤Step - by - step explanation :-

Given that -

→ Curved surface area ( C.S.A) = 4400 cm²

→ circumference of its base = 220 cm ,

→ Volume (v) = ? ,

Now ,

\begin{gathered} \mapsto \rm \: circumfrance \: of \: its \: base = 220 \\ \\ \mapsto \rm \: 2 \pi \: r = 220 \\ \\ \mapsto \rm \: r = \frac{110}{ \pi} \: \: \because \: \pi = \frac{22}{7} \\ \\ \mapsto \rm \: r = \frac{110 \times 7}{22} \\ \\ \mapsto \rm \: r = 5 \times 7 \\ \\ \mapsto \boxed{ \rm r = 35 \: cm} \\ \\ \bf now \\ \\ \mapsto \rm \: ( C.S.A) = 4400 \: {cm}^{2} \\ \\ \mapsto \rm \: 2 \times \pi \times r \times h = 4400 \\ \: \\ \mapsto \rm \: h = \frac{4400}{2 \times \pi \times r} \\ \: \: \: \: \: \boxed{ \because \rm \: r = 35 \: \: and \: \pi = \frac{22}{7} } \\ \\ \mapsto \rm h = \frac{4400 \times 7}{2 \times 22 \times 35} \\ \\ \mapsto \rm \: h = \frac{200}{2 \times 5} \\ \\ \mapsto \boxed{ \: \rm h = 20} \\ \\ \sf \: and \: now \\ \\ \to \rm voume \: of \: cylinder \: (v) = \pi \: {r}^{2} \: h \\ \\ \to \rm \: v = \frac{22}{7} \times 35 \times 35 \times 20 \\ \\ \to \boxed{ \rm \: v = 77000}\end{gathered}

↦circumfranceofitsbase=220

↦2πr=220

↦r=

π

110

∵π=

7

22

↦r=

22

110×7

↦r=5×7

r=35cm

now

↦(C.S.A)=4400cm

2

↦2×π×r×h=4400

↦h=

2×π×r

4400

∵r=35andπ=

7

22

↦h=

2×22×35

4400×7

↦h=

2×5

200

h=20

andnow

→voumeofcylinder(v)=πr

2

h

→v=

7

22

×35×35×20

v=77000

Hence ,volume of cylinder is 77000 cm³

Similar questions