Math, asked by aksh173, 1 year ago

plz solve
............

Attachments:

Answers

Answered by BEJOICE
1

 \frac{1}{1 + x +  \frac{1}{y} }  +  \frac{1}{1 + y +  \frac{1}{z} }  +  \frac{1}{1 + z +  \frac{1}{x} }  \\ since \:  \: xyz = 1 \\ put \:  \frac{1}{y}  = xz \: in \: 1st \: term \:  \: and \\ y =  \frac{1}{xz}  \: in \: 2nd \: term
 \frac{1}{1 + x + xz}  +  \frac{1}{1 +  \frac{1}{xz}  +  \frac{1}{z} }  +  \frac{1}{1 + z +  \frac{1}{x} }  \\
 \frac{1}{1 + x + xz}  +  \frac{xz}{xz + 1 + x}  +  \frac{x}{x + xz + 1}  \\  =  \frac{1 + xz + x}{1 + x + xz}  = 1
Answered by vicky009
1
hi Aksh.................
Similar questions