Math, asked by kf8, 1 year ago

plz solve.............

Attachments:

Answers

Answered by samrat00725100
2

8p^3 + \frac{12}{5}p^2 + \frac{6}{25}p+\frac{1}{125}

(2p)^3 + 3\cdot(2p)^2\cdot\frac{1}{5} + 3\cdot2p\cdot(\frac{1}{5})^2 + (\frac{1}{5})^3

(2p+\frac{1}{5})^3


Swarup1998: Great answer! (:
rakeshmohata: thanks!! ❤️
Answered by rakeshmohata
5
Hope u like my process
=====================
Formula to be used
=-=-=-=-=-=-=-=-=-=-=-=
 =  >  \boxed{ \it \orange{ {x}^{3} + 3 {x}^{2}y + 3x {y}^{2}  +  {y}^{3}}    =  \orange{(x + y) {}^{3} } }
________________________
Now,..
=-=-=-=-
 =  >  \bf \blue{8 {p}^{3}  +  \frac{12}{5}  {p}^{2}  +  \frac{6}{25} p +  \frac{1}{125} } \\  \\  =  \blue{  {(2p)}^{3}  + 3 {(2)}^{2p} ( \frac{1}{5} ) + 3(2) {( \frac{1}{5}p )}^{2}  +  {( \frac{1}{5} )}^{3} } \\  \\  =  \boxed{ \bf  \underline{\blue{ {(2p +  \frac{1}{5} )}^{3} }}}
_________________________
Alternative process
=-=-=-=-=-=-=-=-=-=-=-
 =  >  \green{ \bf \: 8 {p}^{3} +  \frac{12}{5} {p}^{2}  +  \frac{6}{25} p +  \frac{1}{125}   } \\  \\  =  \green{8 {p}^{3}  +  \frac{4}{5}  {p}^{2}  +  \frac{8}{5} {p}^{2}  +  \frac{4}{25}p  +  \frac{2}{25}p +  \frac{1}{125}    } \\  \\  =   \green{4 {p}^{2} (2p +  \frac{1}{5} ) +  \frac{4}{5}p (2p +  \frac{1}{5}) +  \frac{1}{25}(2p +  \frac{1}{5}  ) } \\  \\  =    \green{(2p +  \frac{1}{5})(4 {p}^{2} +  \frac{4}{5} p +  \frac{1}{25} )  } \\  \\  = \green{ (2p +  \frac{1}{5} )(4 {p}^{2} +  \frac{2}{5} p +  \frac{2}{5}p +  \frac{1}{25} )  } \\  \\  =  \green{(2p +  \frac{1}{5})(2p(2p +  \frac{1}{5} ) +  \frac{1}{5} (2p +  \frac{1}{5} )) } \\  \\  =  \green{(2p +  \frac{1}{5} )(2p +  \frac{1}{5} )(2p +  \frac{1}{5} )} \\  \\  =   \boxed{ \underline{ \green{ {(2p +  \frac{1}{5} )}^{3} }}}
Thus the required factorization is.

 =  >  \boxed{  \orange{ {(2p +  \frac{1}{5}) }^{3} }}
_____________________________
Hope this is ur required answer

Proud to help you

Swarup1998: Great answer! (:
Similar questions