plz solve.............
Attachments:
![](https://hi-static.z-dn.net/files/da0/941a0dcae7dfd02e82d4c3c2dc142a7f.jpg)
Answers
Answered by
2
Swarup1998:
Great answer! (:
Answered by
5
Hope u like my process
=====================
Formula to be used
=-=-=-=-=-=-=-=-=-=-=-=
![= > \boxed{ \it \orange{ {x}^{3} + 3 {x}^{2}y + 3x {y}^{2} + {y}^{3}} = \orange{(x + y) {}^{3} } } = > \boxed{ \it \orange{ {x}^{3} + 3 {x}^{2}y + 3x {y}^{2} + {y}^{3}} = \orange{(x + y) {}^{3} } }](https://tex.z-dn.net/?f=+%3D++%26gt%3B++%5Cboxed%7B+%5Cit+%5Corange%7B+%7Bx%7D%5E%7B3%7D+%2B+3+%7Bx%7D%5E%7B2%7Dy+%2B+3x+%7By%7D%5E%7B2%7D++%2B++%7By%7D%5E%7B3%7D%7D++++%3D++%5Corange%7B%28x+%2B+y%29+%7B%7D%5E%7B3%7D+%7D+%7D)
________________________
Now,..
=-=-=-=-
![= > \bf \blue{8 {p}^{3} + \frac{12}{5} {p}^{2} + \frac{6}{25} p + \frac{1}{125} } \\ \\ = \blue{ {(2p)}^{3} + 3 {(2)}^{2p} ( \frac{1}{5} ) + 3(2) {( \frac{1}{5}p )}^{2} + {( \frac{1}{5} )}^{3} } \\ \\ = \boxed{ \bf \underline{\blue{ {(2p + \frac{1}{5} )}^{3} }}} = > \bf \blue{8 {p}^{3} + \frac{12}{5} {p}^{2} + \frac{6}{25} p + \frac{1}{125} } \\ \\ = \blue{ {(2p)}^{3} + 3 {(2)}^{2p} ( \frac{1}{5} ) + 3(2) {( \frac{1}{5}p )}^{2} + {( \frac{1}{5} )}^{3} } \\ \\ = \boxed{ \bf \underline{\blue{ {(2p + \frac{1}{5} )}^{3} }}}](https://tex.z-dn.net/?f=+%3D++%26gt%3B++%5Cbf+%5Cblue%7B8+%7Bp%7D%5E%7B3%7D++%2B++%5Cfrac%7B12%7D%7B5%7D++%7Bp%7D%5E%7B2%7D++%2B++%5Cfrac%7B6%7D%7B25%7D+p+%2B++%5Cfrac%7B1%7D%7B125%7D+%7D+%5C%5C++%5C%5C++%3D++%5Cblue%7B++%7B%282p%29%7D%5E%7B3%7D++%2B+3+%7B%282%29%7D%5E%7B2p%7D+%28+%5Cfrac%7B1%7D%7B5%7D+%29+%2B+3%282%29+%7B%28+%5Cfrac%7B1%7D%7B5%7Dp+%29%7D%5E%7B2%7D++%2B++%7B%28+%5Cfrac%7B1%7D%7B5%7D+%29%7D%5E%7B3%7D+%7D+%5C%5C++%5C%5C++%3D++%5Cboxed%7B+%5Cbf++%5Cunderline%7B%5Cblue%7B+%7B%282p+%2B++%5Cfrac%7B1%7D%7B5%7D+%29%7D%5E%7B3%7D+%7D%7D%7D)
_________________________
Alternative process
=-=-=-=-=-=-=-=-=-=-=-
![= > \green{ \bf \: 8 {p}^{3} + \frac{12}{5} {p}^{2} + \frac{6}{25} p + \frac{1}{125} } \\ \\ = \green{8 {p}^{3} + \frac{4}{5} {p}^{2} + \frac{8}{5} {p}^{2} + \frac{4}{25}p + \frac{2}{25}p + \frac{1}{125} } \\ \\ = \green{4 {p}^{2} (2p + \frac{1}{5} ) + \frac{4}{5}p (2p + \frac{1}{5}) + \frac{1}{25}(2p + \frac{1}{5} ) } \\ \\ = \green{(2p + \frac{1}{5})(4 {p}^{2} + \frac{4}{5} p + \frac{1}{25} ) } \\ \\ = \green{ (2p + \frac{1}{5} )(4 {p}^{2} + \frac{2}{5} p + \frac{2}{5}p + \frac{1}{25} ) } \\ \\ = \green{(2p + \frac{1}{5})(2p(2p + \frac{1}{5} ) + \frac{1}{5} (2p + \frac{1}{5} )) } \\ \\ = \green{(2p + \frac{1}{5} )(2p + \frac{1}{5} )(2p + \frac{1}{5} )} \\ \\ = \boxed{ \underline{ \green{ {(2p + \frac{1}{5} )}^{3} }}} = > \green{ \bf \: 8 {p}^{3} + \frac{12}{5} {p}^{2} + \frac{6}{25} p + \frac{1}{125} } \\ \\ = \green{8 {p}^{3} + \frac{4}{5} {p}^{2} + \frac{8}{5} {p}^{2} + \frac{4}{25}p + \frac{2}{25}p + \frac{1}{125} } \\ \\ = \green{4 {p}^{2} (2p + \frac{1}{5} ) + \frac{4}{5}p (2p + \frac{1}{5}) + \frac{1}{25}(2p + \frac{1}{5} ) } \\ \\ = \green{(2p + \frac{1}{5})(4 {p}^{2} + \frac{4}{5} p + \frac{1}{25} ) } \\ \\ = \green{ (2p + \frac{1}{5} )(4 {p}^{2} + \frac{2}{5} p + \frac{2}{5}p + \frac{1}{25} ) } \\ \\ = \green{(2p + \frac{1}{5})(2p(2p + \frac{1}{5} ) + \frac{1}{5} (2p + \frac{1}{5} )) } \\ \\ = \green{(2p + \frac{1}{5} )(2p + \frac{1}{5} )(2p + \frac{1}{5} )} \\ \\ = \boxed{ \underline{ \green{ {(2p + \frac{1}{5} )}^{3} }}}](https://tex.z-dn.net/?f=+%3D++%26gt%3B++%5Cgreen%7B+%5Cbf+%5C%3A+8+%7Bp%7D%5E%7B3%7D+%2B++%5Cfrac%7B12%7D%7B5%7D+%7Bp%7D%5E%7B2%7D++%2B++%5Cfrac%7B6%7D%7B25%7D+p+%2B++%5Cfrac%7B1%7D%7B125%7D+++%7D+%5C%5C++%5C%5C++%3D++%5Cgreen%7B8+%7Bp%7D%5E%7B3%7D++%2B++%5Cfrac%7B4%7D%7B5%7D++%7Bp%7D%5E%7B2%7D++%2B++%5Cfrac%7B8%7D%7B5%7D+%7Bp%7D%5E%7B2%7D++%2B++%5Cfrac%7B4%7D%7B25%7Dp++%2B++%5Cfrac%7B2%7D%7B25%7Dp+%2B++%5Cfrac%7B1%7D%7B125%7D++++%7D+%5C%5C++%5C%5C++%3D+++%5Cgreen%7B4+%7Bp%7D%5E%7B2%7D+%282p+%2B++%5Cfrac%7B1%7D%7B5%7D+%29+%2B++%5Cfrac%7B4%7D%7B5%7Dp+%282p+%2B++%5Cfrac%7B1%7D%7B5%7D%29+%2B++%5Cfrac%7B1%7D%7B25%7D%282p+%2B++%5Cfrac%7B1%7D%7B5%7D++%29+%7D+%5C%5C++%5C%5C++%3D++++%5Cgreen%7B%282p+%2B++%5Cfrac%7B1%7D%7B5%7D%29%284+%7Bp%7D%5E%7B2%7D+%2B++%5Cfrac%7B4%7D%7B5%7D+p+%2B++%5Cfrac%7B1%7D%7B25%7D+%29++%7D+%5C%5C++%5C%5C++%3D+%5Cgreen%7B+%282p+%2B++%5Cfrac%7B1%7D%7B5%7D+%29%284+%7Bp%7D%5E%7B2%7D+%2B++%5Cfrac%7B2%7D%7B5%7D+p+%2B++%5Cfrac%7B2%7D%7B5%7Dp+%2B++%5Cfrac%7B1%7D%7B25%7D+%29++%7D+%5C%5C++%5C%5C++%3D++%5Cgreen%7B%282p+%2B++%5Cfrac%7B1%7D%7B5%7D%29%282p%282p+%2B++%5Cfrac%7B1%7D%7B5%7D+%29+%2B++%5Cfrac%7B1%7D%7B5%7D+%282p+%2B++%5Cfrac%7B1%7D%7B5%7D+%29%29+%7D+%5C%5C++%5C%5C++%3D++%5Cgreen%7B%282p+%2B++%5Cfrac%7B1%7D%7B5%7D+%29%282p+%2B++%5Cfrac%7B1%7D%7B5%7D+%29%282p+%2B++%5Cfrac%7B1%7D%7B5%7D+%29%7D+%5C%5C++%5C%5C++%3D+++%5Cboxed%7B+%5Cunderline%7B+%5Cgreen%7B+%7B%282p+%2B++%5Cfrac%7B1%7D%7B5%7D+%29%7D%5E%7B3%7D+%7D%7D%7D+)
Thus the required factorization is.
![= > \boxed{ \orange{ {(2p + \frac{1}{5}) }^{3} }} = > \boxed{ \orange{ {(2p + \frac{1}{5}) }^{3} }}](https://tex.z-dn.net/?f=+%3D++%26gt%3B++%5Cboxed%7B++%5Corange%7B+%7B%282p+%2B++%5Cfrac%7B1%7D%7B5%7D%29+%7D%5E%7B3%7D+%7D%7D)
_____________________________
Hope this is ur required answer
Proud to help you
=====================
Formula to be used
=-=-=-=-=-=-=-=-=-=-=-=
________________________
Now,..
=-=-=-=-
_________________________
Alternative process
=-=-=-=-=-=-=-=-=-=-=-
Thus the required factorization is.
_____________________________
Hope this is ur required answer
Proud to help you
Similar questions