Math, asked by anganabanerjee999, 9 months ago

Plz solve 9 and 10 both . Who will do it correctly I will mark it the brainliest​

Attachments:

Answers

Answered by BrainlyTornado
5

QUESTION 1:

Putting \:  \:z  = \pi/4 \:  \:  show \:  \: that    \\ \\  \displaystyle  \lim_{x \to\pi/4} \dfrac{1 -  \tan x}{1 -  \sqrt{2} \sin x}  = 2

FORMULAE USED:

 \tan(x + y) =  \dfrac{ \tan x  + \tan y}{1 - \tan x \tan y}  \\  \\  \\\sin (x + y) =  \sin x \cos y+\cos x \sin y \\  \\  \\   \tan \bigg( \dfrac{ \pi}{4}  \bigg) = 1  \\  \\ \\ \sin\bigg( \dfrac{ \pi}{4}  \bigg)  =  \dfrac{1}{ \sqrt{2} } \\  \\  \\ \cos \bigg( \dfrac{ \pi}{4}  \bigg) =  \dfrac{1}{ \sqrt{2} }  \\  \\  \\ 1 -  \cos x = 2 { \sin}^{2} x \\  \\  \\  sinx = 2  \sin( \frac{x}{2}  )  \cos( \frac{x}{2}  ) \\  \\  \\ \dfrac{ \sin x }{x}  = 1 \\  \\  \\  \dfrac{ \tan x }{x}  = 1 \\  \\  \\

Tan 0° = 0

Sin 0° = 0

cos 0° = 1

QUESTION 2:

Putting \:  \: x =  \theta -  \frac{ \pi}{4} \:  prove \:   \:  that  \\ \\ \displaystyle  \lim_{x \to\pi/4} \dfrac{ \sin \theta -  \cos \theta}{ \theta  - \dfrac{ \pi}{4}}

FORMULAE USED:

 \sin (x + y) =  \sin x \cos y+\cos x \sin y  \\  \\  \\ \cos(x + y) = \cos x\cos y - \sin x\sin y  \\  \\  \\ \sin\bigg( \dfrac{ \pi}{4}  \bigg)  =  \dfrac{1}{ \sqrt{2} } \\  \\   \\ \cos \bigg( \dfrac{ \pi}{4}  \bigg) =  \dfrac{1}{ \sqrt{2} } \\  \\  \\  \dfrac{ \sin x}{x}  = 1

NOTE:REFER ATTACHMENT FOR PROOF.

Attachments:
Similar questions