Math, asked by nayanayush5456, 2 months ago

plz solve above question​

Attachments:

Answers

Answered by Anonymous
0

Given that ,  \sf \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{x} = \dfrac{1}{p + q + x} .

Need To Find : Value of x ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀Given that ,

\dashrightarrow \sf \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{x} = \dfrac{1}{p + q + x} \:\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Solving \: the \: Given \::}}\\

\dashrightarrow \sf \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{x} = \dfrac{1}{p + q + x} \:\\\\ \dashrightarrow \sf \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{x} - \dfrac{1}{p + q + x}  = 0 \:\\\\ \dashrightarrow \sf \bigg[ \dfrac{1}{p} + \dfrac{1}{q}\bigg] +\bigg[  \dfrac{1}{x} - \dfrac{1}{p + q + x} \bigg]  = 0 \:\\\\ \dashrightarrow \sf \bigg[ \dfrac{p + q }{pq}\bigg] +\bigg[  \dfrac{(x + p + q )- x }{x ( p + q + x ) } \bigg]  = 0 \:\\\\\dashrightarrow \sf \bigg[ \dfrac{p + q }{pq}\bigg] +\bigg[  \dfrac{x + p + q - x }{x ( p + q + x ) } \bigg]  = 0 \:\\\\\dashrightarrow \sf \bigg[ \dfrac{p + q }{pq}\bigg] +\bigg[  \dfrac{x + p + q - x }{x ( p + q + x ) } \bigg]  = 0 \:\\\\ \dashrightarrow \sf \bigg[ \dfrac{p + q }{pq}\bigg] +\bigg[  \dfrac{ p + q }{x ( p + q + x ) } \bigg]  = 0 \:\\\\ \dashrightarrow \sf  ( p + q )   \bigg[  \dfrac{1}{pq} + \dfrac{ 1 }{x ( p + q + x ) } \bigg]  = 0 \:\\\\ \dashrightarrow \sf  ( p + q )   \bigg[ \dfrac{ x^2 + xp + xq + pq  }{ (pq) (x) ( p + q + x ) } \bigg]  = 0 \:\\\\\dashrightarrow \sf  ( p + q )  \bigg[ \dfrac{ x^2 + xq + xp + pq  }{ (pq) (x) ( p + q + x ) } \bigg]  = 0 \:\\\\ \dashrightarrow \sf  ( p + q )   \bigg[ \dfrac{ x( x + q )  + p ( x + q ) }{ (pq) (x) ( p + q + x ) } \bigg]  = 0 \:\\\\\dashrightarrow \sf  ( p + q )   \bigg[ \dfrac{ ( x + p ) ( x + q ) }{ (pq) (x) ( p + q + x ) } \bigg]  = 0 \:\\\\ \dashrightarrow \sf  \bigg[ \dfrac{ ( x + p ) ( x + q ) }{ (pq) (x) ( p + q + x ) } \bigg]  = \dfrac{0}{( p + q )} \:\\\\ \dashrightarrow \sf  \bigg[ \dfrac{ ( x + p ) ( x + q ) }{ (pq) (x) ( p + q + x ) } \bigg]  = 0 \:\\\\ \dashrightarrow \sf    ( x + p ) ( x + q )  = 0   \times (pq) (x) ( p + q + x ) \:\\\\ \dashrightarrow \sf    ( x + p ) ( x + q )  = 0  \:\\\\ \dashrightarrow \sf    \:x\:=\:-p \:\:or\:\: x \:=\:-q \:\\\\

\dashrightarrow \:\underline {\boxed{\purple {\pmb{\frak{\:\:x\:=\:-p \:\:or\:\: \:-q \:}}}}}\:\:\bigstar \:\:\\\\

\qquad \therefore \underline {\sf Hence,  The \:value \:of \: x \:can \: be \:\pmb{\bf{ - p \: or \:-q \:}}.}\\

Answered by Srimi55
2

Answer:

x =  \frac{1}{2 -  \frac{1}{2 -  \frac{1}{2 -  x} }  }  \\  =  > x =  \frac{1}{2 -  \frac{1}{ \frac{2(2 - x) - 1}{2 -  x} } }  \\  =  > x =  \frac{1}{2 -  \frac{2 - x}{4 - 2x - 1 } }  \\  =  > x =  \frac{1}{ \frac{2(3 - 2x) - (2 - x)}{3 - 2x} } \\  =  > x =  \frac{3 - 2x}{6 - 4x - 2 + x}  \\  =  >  x =  \frac{3 - 2x}{4 - 3x }  \\  =  > 4x - 3 {x}^{2}  = 3 - 2x \\  =  > 6x - 3 {x}^{2}  = 3

Similar questions