Math, asked by themusicalgamer17, 1 month ago

PLZ solve all questions i will make u brainliest

Attachments:

Answers

Answered by rosterchotatechnical
0

Answer:

chota technical gamer ko subscribe karo

Answered by nainagugnani11
1

Answer:

16. Since, the ratio of its internal to external angle is 7:2, you can say that

its internal angle = 7x and exterior angle = 2x.

Therefore,

7x + 2x = 180

=> x = 20

Exterior angle = 40 degrees

now (exterior angle) = 360/(no. of sides)

solving, you will get no. of sides = 9.

17. In paralelogram opposite sides are equal .

26 = 3y - 1

26 +1 = 3y

27 = 3y

27\3 + y

9 = y

18 = 3x

18\3 = x

6 = x.

18. The number of sides of a polygon with each exterior angle 60∘ is 6.

19. let the quad ABCD with angles in ratio 3:4:5:6

let the angles be 3x,4x,5x,6x

3x+4x+5x+6x=360° (angle sum property of quad.)

18x=360°

x=20

therefore, the angles are

3x=3·20=60°-A

4x=4·20=80°-B

5x=5·20=100°-C

6x=6·20=120°-D

now,A and D are supplementary

and,B and C are supplementary

∴AB║CD

when 2 opposite sides are parallel, the quad. is trapezium.

20. ∠BOA = 90º (vertically opposite angle)

∠BA0 = 180 - 56 - 90 = 34º (Sum of angles in a triangle)

∠BCA = 56º (Isosceles triangle)

∠BAC = 180 - 56 - 56 = 68º (Sum of angles in a triangle)  

∠CAB = ∠BAC - ∠BAO

∠CAB = 68 - 34 = 34º

Answer: ∠CAB = 34º.

21. ⇒  In the given figure ABCD is a rectangle.

⇒  OA=2x+4 and OD=3x+1               [Given]

⇒  AC and BD are diagonals of a rectangle.

⇒  We know that diagonals of a rectangle are equal.

⇒  So, AC = BD

We can also write it as,

⇒  2×OA=2×OD

⇒  2×(2x+4) =2×(3x+1)

⇒  2x+4=3x+1

∴   x=3

22. Let ABCD is a rhombus.

⇒  AB=BC=CD=DA                     [ Adjacent sides are eqaul in rhombus ]

In △AOD and △COD

⇒  OA=OC          [ Diagonals of rhombus bisect each other ]

⇒  OD=OD         [ Common side ]

⇒  AD=CD          

∴  △AOD≅△COD              [ By SSS congruence rule ]

⇒  ∠AOD=∠COD                [ CPCT ]

⇒  ∠AOD+∠COD=180  

              [ Linear pair ]

⇒  2∠AOD=180  

∴  ∠AOD=90  

23. we know that sum of adjacent angle in a parallelogram is 180.

3x-4+3x+10=180

6x+6=180

6x=180-6

x=174/6

x=29

therefor 1st angle=3*29-4=83

2nd angle=3*29+10=97

24. angle A + angle B + angle C + angle D = 360°

100° + angle B + angle C + angle D = 360°

angle B + angle C + angle D = 360° - 100°

angle B + angle C + angle D = 260°

4 + 6 + 3 = 260°

13 = 260°

(1) 13.               260°

4 ?

260×4/13= 80°

(2) 13             260°

6 ?

260×6/13= 120°

(3)13          260°

3              . ?

260×3/13= 60°

25. Let ABCD be the parallelogram.

Now, AB = 4.8 cmBC = 32AB = 32×4.8 = 7.2 cm

Now, CD = AB = 4.8 cm  (opposite sides of ∥gm are equal)

AD = BC = 7.2 cm   (opposite sides of ∥gm are equal)

Now, perimeter = AB + BC + CD + DA = 4.8 + 7.2 + 4.8 + 7.2 =24 cm.

26. let the other two angles be 2x and 3x.

Sum of angles of a quad.=360

160+2x+3x=360

5x=360-160

x=200/5

x=40

2x=2×40=80

3x=3×40=120.

27. If you know that the diagonal (hypotenuse) of the rectangle is 5 cm, and one of the sides is 3 cm, you can calculate the length of the other side using the Pythagorean theorem.

(c2 = a2 + b2)

5^2 = 3^2 + b^2

25 = 9 + b^2

16 = b^2

b = sqrt (16) = 4 cm

Since the perimeter of a rectangle = 2w + 2l, P = 2(3) + 2(4) = 14 cm.

28. Given that

ABCD is a Parallelogram.

and

∠EBA = 110°

∠EBA and ∠ABC are linear pair.

∠EBA + ∠ABC = 180°

=> 110° + Z = 180°

=> Z = 180° - 110°

=> Z = 70°

The value of Z = 70°

and

We know that

In a Parallelogram

Opposite angles are equal.

∠ABC = ∠CDA

=> Z = P

=> P = 70°

The value of P = 70°

and we know that  

Adjacent angles are supplementary in a Parallelogram

∠CDA + ∠DAB = 180°

=> 70° + Y = 180°

=> Y = 180°-70°

=> Y = 110°

The value of Y = 110°

In a Parallelogram

Opposite angles are equal.

Y =X

X = 110°

The value of X = 110°

Answer:-

The value of X = 110°

The value of Y = 110°

The value of P = 70°

The value of Z = 70°

29. Given :-

diagonal of rhombus = 6cm

second diagonal = 8cm

perimeter = ?

we will use Pythagoras theorem

AC² = AB² + BC²

AC² = 6² +8²

AC² = 36 +64

AC² = 100

AC =√100

AC = 10 cm

perimeter of rhombus = 4* side

but it's half of diagonal

perimeter = 2*10 = 20cm.

30. consider angle DAB=angle 1 =120

angle ABC=angle 2=80

angle BCD=angle 3=60

angle CDA =angle 4=m

to find m  

in a quad abcd sum of interior angles =360

1 +2+3+4=180

120+80+60+m=360

m=360-260

m=100

x+angle 1 =180(linear pair)

x+120=180

x=180-120=60

y+angle 2 =180(linear pair)

y+80=180

y=180-80=100

z+angle 3 =180(linear pair)

z+60=180

z=180-60=120

w+angle4  =180(linear pair)

w+100=180

w=180-100=80

Total =w+x+y+z

60+100+120+80=360

I have answered all your questions.

Please mark as brainliest.

Similar questions