Math, asked by Rimpi2983, 9 months ago

Plz solve and send asap

Attachments:

Answers

Answered by Anonymous
12

Answer:

\\

2. \left(\dfrac{m}{n}\right)^{-1}=0.0263671875\\

3. (a) x = 3

\\\\

Given:

\\

\dfrac{m}{n}\:=\:\left(\dfrac{3}{4}\right)^{-5}\:\times\:\left(\dfrac{1}{3}\right)^{-2}\\

\left[\left(\dfrac{4}{5}\right)^3\right]^{-2}\:=\:\left(\dfrac{4}{5}\right)^{2x}\\\\

To Calculate:

\\

2. \left(\dfrac{m}{n}\right)^{-1}\\

3. (a) Find the value of x.

\\\\

Explanation:

\\

2)

\\

 \dfrac{m}{n}  = \left( \dfrac{3}{4} \right)^{ - 5}  \times \left( \dfrac{1}{3} \right)^{ - 2}  \\

 \dfrac{m}{n}  =  \left(\dfrac{4}{3} \right) ^{5}  \times  {3}^{2}  \\

 \dfrac{m}{n}  =  \dfrac{4^{5} }{3^{5 - 2} }  \\

 \dfrac{m}{n}  =  \frac{ {4}^{5} }{ {3}^{3} }  \\

 \dfrac{m}{n}  =  \dfrac{1024}{27}  \\

To Calculate:

\left(\dfrac{m}{n}\right)^{-1}\\

\left( \dfrac{m}{n} \right)^{ - 1} =  \left(\dfrac{1024}{27}\right)^{ - 1}   \:  \:  \:  \:  \:  \:  \: \\ \left( \frac{m}{n} \right)^{ - 1}  = \left( \frac{27}{1024} \right) \:  \:  \: \:  \:  \:  \:  \:  \:   \:  \:  \\ \left( \frac{m}{n} \right)^{ - 1}  = 0.0263671875

\\\\

3) (a)

\\

\left[\left( \dfrac{4}{5} \right)^{ - 3} \right] ^{2}  = \left( \dfrac{4}{5}\right ) ^{2x}  \\ \left[ \dfrac{4}{5} \right]^{ - 6}  =\left (  \frac{4}{5} \right)^{2x}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\

Comparing powers on both sides, we get:

2x = -6

x = -3

\\\\

Therefore, the answer is:

\left(\dfrac{m}{n}\right)^{-1}=0.0263671875

☞x = -3

Similar questions