Plz solve ASAP
Maths
Class 10
Attachments:
Answers
Answered by
22
Let's
=> AB = a
=> AD = h
=> AC = b
=> BC = l
__________
now,
» Area of triangle = 1/2 ×base×height
=> area = A = 1/2 × a × b
=> b = 2A / a _____[Eq(1)]
» Again it can also be written as
=> Area = A = 1/2 × h × l
=> l = 2A / h _____[Eq(2)]
_______
Now in ΔABC,
=> a² + b² = l²
» substituting values of a and b from (1) and (2) in this equation we get,
=> a2²+ (2A/a)² = (2A/h)²
=> a² + 4A² / a² = 4A² / h²
=> (a^4 + 4A²) / a² = 4A² / h²
=> h² = 4 A² a² / (a^4 + 4A²)
=> h = 2×A×a / √(a^4 + 4A²)
______________[ANSWER]
●▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬●
_-_-_-_✌☆☆✌_-_-_-_
=> AB = a
=> AD = h
=> AC = b
=> BC = l
__________
now,
» Area of triangle = 1/2 ×base×height
=> area = A = 1/2 × a × b
=> b = 2A / a _____[Eq(1)]
» Again it can also be written as
=> Area = A = 1/2 × h × l
=> l = 2A / h _____[Eq(2)]
_______
Now in ΔABC,
=> a² + b² = l²
» substituting values of a and b from (1) and (2) in this equation we get,
=> a2²+ (2A/a)² = (2A/h)²
=> a² + 4A² / a² = 4A² / h²
=> (a^4 + 4A²) / a² = 4A² / h²
=> h² = 4 A² a² / (a^4 + 4A²)
=> h = 2×A×a / √(a^4 + 4A²)
______________[ANSWER]
●▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬●
_-_-_-_✌☆☆✌_-_-_-_
Attachments:
gutted:
giii hiii deep
Answered by
15
Heya!
-------
============================================================
♦Given that =>
===========
◾A is the Area of Right Triangle .
◾AB = 'a '
◾AD = 'h' < Height >
◾Let AC = 'b '
◾Let BC = 'c '
♦Area of a ∆ = ½ × Base ( B ) × Height ( H )
=>Thus , Area of ∆ =
=> ½ × a × b
=> A = ab/2
◾b = 2A/ a ...................( 1 )
✴Also ,
◾c = 2A / h ..................( 2 )
♦Applying Pythagoras theorem to ∆ABC
===================================
=> ( H ) ² = ( P )² + ( B ) ²
=> a² + b² = c²
◾Putting values of b and c from Equation ( 1 ) and ( 2)
==============================================
=> a² + ( 2A / a ) ² = ( 2A / h ) ²
=> a² + 4A ² / a² = 4A² / h²
=> a⁴ + 4A² / a² = 4A² / h²
◀From the Equation ,
====================
H² => a²• 4A² / a⁴ + 4A²
H => 2A•a / √a⁴ + 4A²
✴Hence Proved ✴
=============================================================
-------
============================================================
♦Given that =>
===========
◾A is the Area of Right Triangle .
◾AB = 'a '
◾AD = 'h' < Height >
◾Let AC = 'b '
◾Let BC = 'c '
♦Area of a ∆ = ½ × Base ( B ) × Height ( H )
=>Thus , Area of ∆ =
=> ½ × a × b
=> A = ab/2
◾b = 2A/ a ...................( 1 )
✴Also ,
◾c = 2A / h ..................( 2 )
♦Applying Pythagoras theorem to ∆ABC
===================================
=> ( H ) ² = ( P )² + ( B ) ²
=> a² + b² = c²
◾Putting values of b and c from Equation ( 1 ) and ( 2)
==============================================
=> a² + ( 2A / a ) ² = ( 2A / h ) ²
=> a² + 4A ² / a² = 4A² / h²
=> a⁴ + 4A² / a² = 4A² / h²
◀From the Equation ,
====================
H² => a²• 4A² / a⁴ + 4A²
H => 2A•a / √a⁴ + 4A²
✴Hence Proved ✴
=============================================================
Attachments:
Similar questions