Math, asked by anganabanerjee999, 8 months ago

Plz solve both of them
No useless answer plz​

Attachments:

Answers

Answered by BrainlyTornado
6

QUESTION 1:

\displaystyle\lim_{x \to \pi/4} \dfrac{4 \sqrt{2} - ( { \cos x +  \sin x)}^{5}  }{1 -  \sin2x}

ANSWER 1:

5√2

NEED TO USE L' HOSPITAL RULE:

\displaystyle\lim_{x \to \pi/4} \dfrac{4 \sqrt{2} - ( { \cos x +  \sin x)}^{5}  }{1 -  \sin2x} \\ \\ \\ \dfrac{4 \sqrt{2} - ( { \cos  \dfrac{ \pi}{4}  +  \sin  \dfrac{ \pi}{4} )}^{5}  }{1 -  \sin 2\dfrac{ \pi}{4} } \\ \\ \\ \dfrac{4 \sqrt{2} - {( \dfrac{1}{ \sqrt{2} } +  \dfrac{1}{ \sqrt{2}  } )}^{5}  }{1 -  \sin \dfrac{ \pi}{2} }\\ \\ \\ \dfrac{4 \sqrt{2} - {( \dfrac{2}{ \sqrt{2} } )}^{5}  }{1 -1 }\\ \\ \\ \dfrac{4 \sqrt{2} - {( \sqrt{2}) }^{5}  }{1 -1 } \\ \\ \\ \dfrac{4 \sqrt{2} - 4 \sqrt{2}  }{1 -1 } \\ \\ \\ \dfrac{0}{0} = \infty

HENCE WE NEED TO USE L' HOSPITAL RULE.

FORMULAE USED:

sin (π/4) = cos (π/4) = 1/√2

sin (π/2) = 1

cos 2x = cos² x - sin² x

(A + B)(A - B) = A² - B²

d/dx ( sin 2x) = 2 cos 2x

d/dx(2x) = 2

d/dx (cos x) = - sin x

d/dx ( sin x) = cos x

d/dx(constant) = 0

QUESTION 2:

\displaystyle\lim_{x  \to 4}  \frac{ {( \cos \alpha)}^{x} -  {( \sin \alpha)}^{x} -  \cos2 \alpha}{x - 4}

ANSWER 2:

 { \cos}^{4}  \alpha \log( \cos \alpha )  -  { \sin}^{4}  \alpha\log( \sin \alpha )

NEED TO USE L' HOSPITAL RULE:

\displaystyle\lim_{x  \to 4}  \frac{ {( \cos \alpha)}^{x} -  {( \sin \alpha)}^{x} -  \cos2 \alpha}{x - 4}\\ \\ \\ \dfrac{ {( \cos \alpha)}^{4} -  {( \sin \alpha)}^{4} -  \cos2 \alpha}{4 - 4}\\ \\ \\\dfrac{ {\cos}^{2} \alpha  +   { \sin}^{2}  \alpha{(\cos}^{2} \alpha -  { \sin}^{2}  \alpha)-  ({ \cos}^{2} \alpha -  { \sin}^{2}  \alpha)  }{4 - 4}\\ \\ \\ \dfrac{{(\cos}^{2} \alpha -  { \sin}^{2}  \alpha)-  ({ \cos}^{2} \alpha -  { \sin}^{2}  \alpha)  }{4 - 4} \\ \\ \\ \dfrac{0}{0} = \infty

HENCE WE NEED TO USE L' HOSPITAL RULE.

FORMULAE USED:

A⁴ - B⁴ = (A² + B²)(A² - B²)

cos 2x = cos² x - sin² x

cos² x + sin² x = 1

 \dfrac{d}{dx} ( {a}^{x} ) = {a}^{x}  \log a

d/dx(constant) = 0

d/dx (x) = 1

NOTE : REFER ATTACHMENT FOR CALCULATION.

Attachments:
Similar questions