Math, asked by gamerriju07, 9 months ago

Plz solve by step by step explanation. ​

Attachments:

Answers

Answered by MOSFET01
1

Solution:

\dfrac{1}{x+1} \: - \: \dfrac{2}{x+2} \: = \: \dfrac{3}{x+3} \: - \: \dfrac{4}{x+4}

 \dfrac{1(x+2)-2(x+1)}{(x+1)(x+2)} \: = \: \dfrac{3(x+4)-4(x+3)}{(x+3)(x+4)}

\dfrac{x+2-2x-2}{x^{2}+2x+x+2}\: = \: \dfrac{3x+12-4x-12}{x^{2}+4x+3x+12}

\dfrac{-x}{x^{2}+3x+2} \: = \: \dfrac{-x}{x^{2} +7x+12}

\dfrac{1}{x^{2}+3x+2} \: = \: \dfrac{1}{x^{2} +7x+12}

Criss cross method

x^{2} + 7x +12 \:=\: x^{2} +3x +2

7x-3x+12-2\:= \:0

4x \:=\:-10

x \:=\: \dfrac{-5}{2}

Answered by Anonymous
22

{\purple{\underline{\underline{\large{\mathtt{ANSWER:-}}}}}}

Value of X is -5/2.

{\purple{\underline{\underline{\large{\mathtt{SOLUTION:-}}}}}}

 \frac{1}{x + 1}  -  \frac{2}{x + 2}  =  \frac{3}{x + 3}  -  \frac{4}{x + 4}  \\  \implies  \frac{x + 2 - 2(x + 1)}{(x + 1)(x  + 2)}  =  \frac{3(x + 4) - 4(x + 3)}{(x + 3)(x + 4)}  \\  \implies \frac{x + 2 - 2x - 2}{ {x}^{2} + 3x + 2 }  =  \frac{3x + 12 - 4x - 12}{ {x}^{2} + 7x + 12 }  \\  \implies  \frac{ - x}{ {x}^{2} + 3x + 2 }  =  \frac{ - x}{ {x}^{2} + 7x + 12 }  \\  \implies\frac{1 }{ {x}^{2}  + 3x + 2}  =  \frac{1}{ {x}^{2}  + 7x + 12}  \\By\: cross\: multiplication\\  \implies  {x}^{2}  + 7x + 12 =  {x}^{2}  + 3x + 2 \\ \implies 7x - 3x = 2 - 12 \\  \implies 4x =  - 10 \\  \implies x =  \frac{ - 5}{2}

Similar questions