Math, asked by kds55, 11 days ago

plz solve don't spam ​

Attachments:

Answers

Answered by Atlas99
6

Refer the attachment for answer.

Attachments:
Answered by varadad25
3

Question:

Find the value of x if

\displaystyle{\sf\:(\:49\:)^{x\:+\:4}\:=\:7^2\:\times\:(\:343\:)^{x\:+\:1}}

Answer:

\displaystyle{\boxed{\red{\sf\:x\:=\:3\:}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:(\:49\:)^{x\:+\:4}\:=\:7^2\:\times\:(\:343\:)^{x\:+\:1}}

We have to find the value of x.

Now,

\displaystyle{\sf\:(\:49\:)^{x\:+\:4}\:=\:7^2\:\times\:(\:343\:)^{x\:+\:1}}

\displaystyle{\implies\sf\:(\:7^2\:)^{x\:+\:4}\:=\:7^2\:\times\:(\:7^3\:)^{x\:+\:1}}

\displaystyle{\implies\sf\:7^{2\:(\:x\:+\:4\:)}\:=\:7^2\:\times\:7^{3\:(\:x\:+\:1\:)}\:\qquad\dots\:[\:(\:a^m\:)^n\:=\:a^{mn}\:]}

\displaystyle{\implies\sf\:7^{2x\:+\:8}\:=\:7^2\:\times\:7^{3x\:+\:3}}

\displaystyle{\implies\sf\:7^{2x\:+\:8}\:=\:7^{2\:+\:3x\:+\:3}\:\qquad\dots\:[\:a^m\:\times\:a^n\:=\:a^{m\:+\:n}\:]}

\displaystyle{\implies\sf\:7^{2x\:+\:8}\:=\:7^{3x\:+\:5}}

\displaystyle{\implies\sf\:2x\:+\:8\:=\:3x\:+\:5\:\qquad\dots\:[\:Bases\:are\:equal\:]}

\displaystyle{\implies\sf\:8\:-\:5\:=\:3x\:-\:2x}

\displaystyle{\implies\underline{\boxed{\red{\sf\:x\:=\:3\:}}}}

Similar questions