Math, asked by Abhishek95265, 9 months ago

plZ solve first revelent answer will be marked as brainliest​

Attachments:

Answers

Answered by akansha7803
5

Step-by-step explanation:

a=4

Step-by-step explanation:

refer to the attachment

Hope it helps!

(pls Mark it the Brainliest^^)

Attachments:
Answered by MisterIncredible
31

Required to find :-

  • Value of " a " ?

Solution :-

Given information :-

 \tt a +  \sqrt{15}  =  \dfrac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  }

We need to find the value of ' a '

So,

Consider the RHS part ;

 \dfrac{  \sqrt{5} +  \sqrt{3}   }{ \sqrt{5}  -  \sqrt{3} }

Here,

We need to rationalise the denominator

Rationalising factor of 5 - 3 = 5 + 3

So,

Multiply both numerator and denominator with the rationalising factor

 \dfrac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  \times  \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} +  \sqrt{3}  }

However,

We need to use some algebraic identities ;

They are ,

  • 1. ( x + y ) ( x + y ) = ( x + y )²

  • 2. ( x + y ) ( x - y ) = x² - y²

  • 3. ( x + y )² = x² + y² - 2xy

So, using the 1st and 2nd we get

 \dfrac{( \sqrt{5}  +  \sqrt{3}  {)}^{2} }{( \sqrt{5}  {)}^{2} - ( \sqrt{3}  {)}^{2}  }

Expand the numerator using the 3rd identity ;

 \dfrac{( \sqrt{5}  {)}^{2}  + ( \sqrt{3} {)}^{2}  + 2( \sqrt{5})( \sqrt{3}  ) }{5 - 3}

 \dfrac{5  +  3 + 2 \sqrt{15} }{2}

 \dfrac{8 + 2 \sqrt{15} }{2}

 \dfrac{2(4 +  \sqrt{15}) }{2}

2 gets cancelled in both numerator and denominator

4 +  \sqrt{15}

Now compare the LHS and RHS

a +  \sqrt{15}  = 4 +  \sqrt{15}

From the above comparison we can conclude that ;

Hence,

Value of ' a ' = 4

Similar questions