plz solve for θ :-
2sin²θ= 3cosθ ; where 0≤ θ ≤ 2π
{Class XI TRIGONOMETRY}
Answers
Answered by
3
Given Expression,
2sin²∅=3cos∅
»2sin²∅-3cos∅=0
We know that,
sin²x+cos²x=1→sin²x=1-cos²x
»2(1-cos²∅)-3cos∅=0
»2-2cos²∅-3cos∅=0
»2cos²∅+3cos∅-2=0
On comparing with ax²+bx+c=0,
a=2,b=3 and c= -2
Discriminant,D:
b²-4ac
= (3)²-4(2)(-2)
= 9+16
=25
Now,
The principle solutions are 1/2 and -2
Implies,
cos x= π/3
General Solution:
x = nπ±y
»x= nπ±π/3
The range of the solutions is (-1,1)
Similar questions