Math, asked by Anonymous, 3 months ago

plz solve i will mark the correct ans as brainilist
dont tell answer only solve it then only i will mwrk as brainilist

Attachments:

Answers

Answered by shadowsabers03
11

We need to recall,

(i) \displaystyle\lim_{x\to0}\dfrac{e^x-1}{x}=1

(ii) \displaystyle\lim_{x\to0}\dfrac{\sin x}{x}=1

(1). Given,

\displaystyle\longrightarrow L_1=\lim_{x\to0}\dfrac{5^x-1}{\sin x}

Since a^b=e^{b\log a},

\displaystyle\longrightarrow L_1=\lim_{x\to0}\dfrac{e^{x\log5}-1}{\sin x}

Divide numerator and denominator by x.

\displaystyle\longrightarrow L_1 =\lim_{x\to0}\dfrac{\left(\dfrac{e^{x\log5}-1}{x}\right)}{\left( \dfrac{\sin x}{x}\right)}

\longrightarrow L_1=\dfrac{\displaystyle \lim_{x\to0}\dfrac{e^{x\log5}-1}{x}}{\displaystyle\lim_{x\to0}\dfrac{\sin x}{x} }

\longrightarrow L_1=\dfrac{\log5\displaystyle \lim_{(x\log5) \to0}\dfrac{e^{x\log5}-1}{x\log5}}{\displaystyle\lim_{x\to0}\dfrac{\sin x}{x} }

By (i) and (ii),

\longrightarrow L_1=\dfrac{\log5\cdot1}{1}

\longrightarrow\underline{\underline{L_1=\log5}}

(2). Given,

\longrightarrow L_2=\displaystyle\lim_{x\to0}\dfrac{5^x-4^x}{x}

\longrightarrow L_2=\displaystyle\lim_{x\to0}\dfrac{e^{x\log5}-e^{x\log4}}{x}

\longrightarrow L_2=\displaystyle\lim_{x\to0}\dfrac{e^{x\log5}-1}{x}-\displaystyle\lim_{x\to0}\dfrac{e^{x\log4}-1}{x}

\longrightarrow L_2=\log5\displaystyle\lim_{(x\log5)\to0}\dfrac{e^{x\log5}-1}{x\log5}-\log4\displaystyle\lim_{(x\log4)\to0}\dfrac{e^{x\log4}-1}{x\log4}

By (i),

\longrightarrow L_2=\log5\cdot1-\log4\cdot1

\longrightarrow\underline{\underline{L_2=\log\left(\dfrac{5}{4}\right)}}

(3). Perform the same logic of (2) and we get,

\longrightarrow\underline{\underline{L_3=\log\left(\dfrac{5}{3}\right)}}

(4). Given,

\longrightarrow L_4=\displaystyle\lim_{x\to0}\dfrac{4^x-1}{3^x-1}

\longrightarrow L_4=\displaystyle\lim_{x\to0}\dfrac{e^{x\log4}-1}{e^{x\log3}-1}

Divide numerator and denominator by x.

\longrightarrow L_4=\displaystyle\lim_{x\to0}\dfrac{\left(\dfrac{e^{x\log4}-1}{x}\right)}{\left(\dfrac{e^{x\log3}-1}{x}\right)}

\longrightarrow L_4=\dfrac{\displaystyle\lim_{x\to0}\dfrac{e^{x\log4}-1}{x}}{\displaystyle\lim_{x\to0}\dfrac{e^{x\log3}-1}{x}}

\longrightarrow L_4=\dfrac{\log4\displaystyle\lim_{(x\log4)\to0}\dfrac{e^{x\log4}-1}{x\log4}}{\log3\displaystyle\lim_{(x\log3)\to0}\dfrac{e^{x\log3}-1}{x\log3}}

By (i),

\longrightarrow L_4=\dfrac{\log4\cdot1}{\log3\cdot1}

\longrightarrow\underline{\underline{L_4=\log_34}}


BrainlyIAS: Fantanstic :-) Perfect :-) Great :-) Superb :-)
Similar questions