Math, asked by kka70, 4 months ago

plz solve it................ ​

Attachments:

Answers

Answered by BrainlyEmpire
35

GIVEN :–

• A function  \:  \: { \bold{ 2x(1 -  {x}^{ - 3} )}} \:  \:

TO FIND :–

• Integration = ?

SOLUTION :–

• Let the function –

  \\  \implies{ \bold{ I =  \int 2x(1 -  {x}^{ - 3} ).dx}}  \\

  \\  \implies{ \bold{ I =  \int  \{2x -(2x ) {x}^{ - 3}  \}.dx}}  \\

  \\  \implies{ \bold{ I = 2 \int (x - {x}^{ - 2}).dx}}  \\

• Using identity –

  \\  \:  \:  \blacktriangleright \:  \: { \bold{  \int  {x}^{n} .dx =  \dfrac{ {x}^{n + 1} }{n + 1} }}  \\

• So that –

  \\  \implies{ \bold{ I = 2  \left( \dfrac{{x}^{1 + 1} }{1 + 1}  -  \dfrac{{x}^{ - 2 + 1}}{ - 2 + 1} \right)+c}}  \\

  \\  \implies{ \bold{ I = 2  \left( \dfrac{{x}^{2} }{2}  -  \dfrac{{x}^{ - 1}}{ - 1} \right) + c}}  \\

  \\  \implies \large{ \boxed{ \bold{ I =   \left( {{x}^{2} }   +   \dfrac{2}{ x} \right) + c}}}  \\

 \\ \rule{220}{2} \\

OTHER IDENTITY :–

  \\  \:  \:  \blacktriangleright \:  \: { \bold{  \int [K.F(x)].dx = K \int F(x).dx }}  \\

Answered by sainiinswag
1

Answer:

Plzzz Follow me ...

.

Plzzzzz mark me Brainliest...

Attachments:
Similar questions