Math, asked by 28vanshikaalex8thb, 2 months ago

plz solve it and tell me step by step​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\dfrac{ \sqrt{3} +  1}{ \sqrt{3}  - 1}  = a + b \sqrt{3}

On rationalizing the denominator, we get

\rm :\longmapsto\:\dfrac{ \sqrt{3} +  1}{ \sqrt{3}  - 1}  \times  \dfrac{ \sqrt{3} + 1}{ \sqrt{3} + 1 }  = a + b \sqrt{3}

\rm :\longmapsto\:\dfrac{( \sqrt{3} +  1) ^{2} }{ (\sqrt{3}  - 1)( \sqrt{3} + 1) }   = a + b \sqrt{3}

\rm :\longmapsto\: \dfrac{3 + 1 + 2 \sqrt{3} }{ {( \sqrt{3} )}^{2}  -  {(1)}^{2} }  = a + b \sqrt{3}

 \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy\bigg \}}

 \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2} \bigg \}}

\rm :\longmapsto\: \dfrac{4+ 2 \sqrt{3} }{3 - 1}  = a + b \sqrt{3}

\rm :\longmapsto\: \dfrac{2(2+  \sqrt{3})}{2}  = a + b \sqrt{3}

\rm :\longmapsto\:  \blue{2} +   \red{\sqrt{3}}  =  \blue{a} + \red{ b \sqrt{3} }

So, On comparing we get,

\bf\implies \:a = 2 \:  \:  \: and \:  \:  \: b = 1

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Answered by Anonymous
102

Answer:

{ \large{ \pmb{ \sf{★ Given... }}}}

{ \sf{ \frac{  \sqrt{3}  + 1}{ \sqrt{3}  - 1} = a + b \sqrt{3}  }} \\

{ \large{ \pmb { \sf{★To \:  Find... </p><p>}}}}

Value of a and b..?

{ \large{ \pmb{ \sf{★Solution... }}}}

 \implies{ \sf{ \frac{ \sqrt{3} + 1 }{ \sqrt{3}  - 1} }} \\

Now Rationalizing the Denominator,

{ \implies{ \sf{ \frac{ \sqrt{3}  + 1}{ \sqrt{3}  - 1}  \times  \frac{ \sqrt{3} + 1 }{ \sqrt{3} + 1 } }}} \\

 \: { \implies{ \sf{ \frac{ {( \sqrt{3} + 1 )}^{2} }{ {( \sqrt{3} )}^{2}  -  {1}^{2} } }}} \\

 \:{ \implies{ \sf{ { \frac{({ \sqrt{3} )}^{2} +  {1}^{2}   + 2( \sqrt{3} )(1)}{3 - 1} }}}}  \\

{ \implies{ \sf{ \frac{3 + 1 + 2 \sqrt{3} }{2} }}}  \\

 \: { \implies{ \sf{ \frac{4 + 2 \sqrt{3} }{2} }}} \\

 \: { \implies{ \sf{ \frac{2(2 +  \sqrt{ 3} )}{2} }}} \\

 \: { \implies{ \sf{ \frac{ \cancel{2}(2 +  \sqrt{ 3} )}{ \cancel{2}} }}} \\

{ \implies{ \sf{2 +  \sqrt{3} }}}

Now Comparing 2 + √3 with a + b√3

We get,

  • a = 2

  • b = 1

Therefore,

  • Value of a = 2
  • Value of b = 1

Used Formula:

  • (a + b) (a - b) = a² - b²

  • (a + b)² = a² + b² + 2ab
Similar questions