Math, asked by shraddha20048, 1 year ago

plz solve it fast.......​

Attachments:

Answers

Answered by Anonymous
6

Here ,

LHS =

 \frac{ {7}^{x + 2}  +  {7}^{x} }{50 \times  {7}^{x} }  \\  \\  =  \frac{ ({7}^{x}  \times  {7}^{2} ) +  {7}^{x} }{50 \times  {7}^{x} }  \\  \\  =   \frac{ {7}^{x} ( {7}^{2}  + 1)}{50 \times  {7}^{x} }  \\  \\  =  \frac{ {7}^{2}  + 1}{50}  \\  \\  =  \frac{49 + 1}{50}  \\  \\  =  \frac{50}{50}  \\  \\  = 1

= RHS

Hence proved

Hope it helps...

● keep smiling &

always shining_____:-)

Answered by Anonymous
5

Given,

(7ˣ⁺² + 7ˣ)/(50 * 7ˣ)

Solution,

\Rightarrow \frac{7^{x + 2} \ + \ 7^x }{50 \ *  \ 7^x}

\Rightarrow \frac{7^x * 7^2 \ + \ 7^x }{50 \ *  \ 7^x}

\Rightarrow \frac{7^x(7^2 + 1)  }{7^x  \ *  \ 50 }

\Rightarrow \frac{7^x(49 + 1)}{7^x * 50}

\Rightarrow \frac{7^x * 50}{7^x * 50}

\Rightarrow 1

#Hope my answer helped you!

Similar questions