Math, asked by Simi2008, 7 months ago

plz solve it guys

answer of
(a) is 30
(b) is 50​

Attachments:

Answers

Answered by sethrollins13
80

For Triangle a) :

Given :

  • Base is 18 cm and Perpendicular Height is 24 cm .

To Find :

  • Value of x .

Solution :

Using Pythagoras Theorem :

\longmapsto\tt{{(x)}^{2}={(B)}^{2}+{(P)}^{2}}

\longmapsto\tt{{(x)}^{2}={(18)}^{2}+{(24)}^{2}}

\longmapsto\tt{{(x)}^{2}=324+576}

\longmapsto\tt{x=\sqrt{900}}

\longmapsto\tt\bf{x=30\:cm}

So , The Value of x is 30 cm ..

_______________________

For Triangle b) :

Given :

  • Base is 30 cm and Perpendicular Height is 40 cm .

To Find :

  • Value of x .

Solution :

Using Pythagoras Theorem :

\longmapsto\tt{{(x)}^{2}={(B)}^{2}+{(P)}^{2}}

\longmapsto\tt{{(x)}^{2}={(30)}^{2}+{(40)}^{2}}

\longmapsto\tt{{(x)}^{2}=900+1600}

\longmapsto\tt{x=\sqrt{2500}}

\longmapsto\tt\bf{x=50\:cm}

So , The Value of x is 50 cm ..

Answered by Mister360
16

Step-by-step explanation:

Here

both triangles are right angled

in triangle (a)

Given \begin{cases}Perpendicular{}_{(p) }=24cm \\ Base {}_{(b)}=18cm \end {cases}

To find:-

value of x =hypontenuse

Solution:-

According to Pythagorean theory

{:}\longrightarrow{\boxed{{h}^{2}={p}^{2}+{b}^{2}}}

{:}\longrightarrow{x }^{2}={24}^{2}+{18}^{2}

{:}\longrightarrowx={\sqrt {576+324}}

{:}\longrightarrowx={\sqrt {900}}

{:}\longrightarrow{\underline{\boxed{\bf {x=30cm}}}}

\thereforehypontenuse =30cm

In triangle(b)

Given\begin{cases}perpendicular{}_{(p)}=40cm \\ base {}_{(b)}=30cm \end {cases}

To find:-

Value of x=hypontenuse

Solution:-

Again according to Pythagorean theory

{:}\longrightarrow{x}^{2}={40}^{2}+{30}^{2}

{:}\longrightarrow{x}^{2}=1600+900

{:}\longrightarrowx={\sqrt{2500}}

{:}\longrightarrow{\underline{\boxed{\bf{x=50cm}}}}

\thereforehypontenuse =50cm.

Similar questions