Plz solve it. . . . . . .I need proper ans.. . .
Attachments:
Answers
Answered by
79
EXPLANATION.
∫sin2x dx/a²sin²x + b²cos²x.
As we know that,
Let we assume that,
⇒ a²sin²x + b²cos²x = t.
Differentiate w.r.t x, we get.
⇒ (a²2sinxcosx + b²2cosx(-sinx))dx = dt.
⇒ (a²2sinxcosx - b²2cosxsinx)dx = dt.
⇒ (a² - b²)2sinxcosx dx = dt.
⇒ (a² - b²)sin2x dx = dt.
⇒ sin2x dx = dt/(a² - b²).
Put the value in equation, we get.
⇒ ∫dt/t(a² - b²).
⇒ 1/(a² - b²) ∫dt/t.
⇒ 1/(a² - b²) ㏑|t| + c.
Put the value of t in equation, we get.
⇒ 1/(a² - b²)㏑|a²sin²x + b²cos²x| + c.
MORE INFORMATION.
Some standard integrals.
(1) = ∫0.dx = c.
(2) = ∫1.dx = x + c.
(3) = ∫k dx = kx + c, (k ∈ R).
(4) = ∫xⁿdx = xⁿ⁺¹/n + 1 + c, (n ≠ -1).
(5) = ∫dx/x = ㏒(x) + c.
(6) = ∫eˣdx = eˣ + c.
(7) = ∫aˣdx = (aˣ)/㏒(a) + c = aˣ㏒(e) + c.
Similar questions