Physics, asked by mihir161203, 10 months ago

plz solve it
Its urgent ​

Attachments:

Answers

Answered by Anonymous
14

\huge\underline\blue{\sf Answer:}

\large\red{\boxed{\sf v_w=3.54m/s}}

\huge\underline\blue{\sf Solution:}

\large\underline\pink{\sf Given: }

  • Mass of wooden earth \sf{M_w} is 10% of mass of original earth \sf{M_e}

We know ,

  • Radius of Earth (R) = 6400km or \sf{6.4×10^6}m

\large\underline\pink{\sf To\:Find: }

  • Escape velocity of wooden earth (\sf{v_w})=?

━━━━━━━━━━━━━━━━━━━━━━━━━━

We know that ,

\large\underline{\underline{\sf Escape\: Velocity\:of\:Earth(v_e):}}

\large{\boxed{\sf v_e=\sqrt{\frac{2GM_e}{R_e}}}}

\large{\sf g=\sqrt{\frac{GM_e}{R_e^2}}}

g of Earth is = 10 \sf{m/s^2}

\large{\sf v_e=\sqrt{2gR}}

\large\implies{\sf v_e=\sqrt{2×10×6.4×10^6} }

\large\implies{\sf v_e=11.2\:m/s}

Escape velocity of Earth is 11.2m/s

From here we can see that escape velocity is directly proportional to Mass of Earth .

So ,

\large\implies{\sf \frac{v_w}{v_e}=\sqrt{\frac{M_e}{M_w}}}

\large\implies{\sf \frac{v_w}{11.2}=\sqrt{\frac{M_e×10}{M_e×100}}}

\large\implies{\sf \frac{v_w}{11.2}=\frac{1}{\sqrt{10}}}

\large\implies{\sf v_w=\frac{11.2}{\sqrt{10}}}

\large\implies{\sf v_w=3.54m/s }

\large\red{\boxed{\sf v_w=3.54m/s}}

Hence ,

Escape velocity of wooden earth will be 3.54m/s

Similar questions