Math, asked by syedhaider54, 6 months ago

plz solve it, its urgent.........

nhi aata toh plz answer na karna
plz
plz
plz​

Attachments:

Answers

Answered by amansharma264
4

EXPLANATION.

\sf \: \implies \: ( \sec \theta \:  -  \:  \tan\theta) {}^{2}   =  \dfrac{1 -  \sin( \theta) }{1 +  \sin( \theta) }   \\  \\  \sf \: \implies \: from \: LHS \: \\  \\ \sf \: \implies \: ( \frac{1}{ \cos( \theta) }  -  \frac{ \sin( \theta) }{ \cos( \theta) }) {}^{2}  \\  \\  \sf \: \implies \: ( \frac{1 -  \sin( \theta) }{ \cos( \theta) }  ) {}^{2}

\sf \: \implies \: from \: RHS \:  \\  \\ \sf \: \implies \:  \frac{1 -  \sin( \theta) }{1 +  \sin( \theta) }   \: \times  \:  \frac{1 -  \sin( \theta) }{1 -  \sin( \theta) }  \\  \\ \sf \: \implies \:  \frac{(1 -  \sin \theta) {}^{2}  }{1 -  \sin {}^{2} ( \theta) }  \\  \\ \sf \: \implies \:  (\frac{(1 -  \sin( \theta) }{ \cos( \theta) } ) {}^{2}  = proof

\sf \: \implies \: (2) =  \dfrac{ \sin(a) }{1 +  \cos(a) }  +  \dfrac{1 +  \cos(a) }{ \sin(a) }  = 2 \csc(a)  \\  \\ \sf \: \implies \:  \frac{( \sin(a)) {}^{2}   + (1 +  \cos(a)) {}^{2}  }{(1 +  \cos \: (a)( \sin(a) ) } \\  \\  \sf \: \implies \:  \frac{ \sin {}^{2} (a)  + (1) {}^{2}  +  \cos {}^{2} (a)  + 2 \cos(a) }{(1 +  \cos(a) )( \sin(a) ) }  \\  \\ \sf \: \implies \:  \frac{2 + 2 \cos(a) }{(1 +  \cos(a)) ( \sin(a))  }  \\  \\ \sf \: \implies \:  \frac{2(1 +  \cos(a)) }{(1 +  \cos(a))( \sin(a))  } \\  \\  \sf \: \implies \:  \frac{2}{ \sin(a) }  = 2 \csc(a)

Similar questions