Math, asked by SamarendraDas143, 3 days ago

plz solve it...

plz. donot spam

and explain it....not only ans...

don't spam....​

Attachments:

Answers

Answered by TrustedAnswerer19
62

Step-by-step explanation:

At first we have to know some basic formula :

\odot\sf \:  \:\displaystyle\int\sf {x}^{n}  \: dx =  \frac{ {x}^{n + 1} }{n + 1}  + c \\  \\  \pink{ \odot\:\displaystyle\int_b^a\sf \: f(x) \: dx = \:\displaystyle\int_b^a\sf \: f(a + b - x) \: dx }\\  \\ { \mathbb \red{ \sf \: now}} \\  \bf \: L.H.S = \:\displaystyle\int_0^a\bf \:  x(a - x)^{n}  \: dx \\ \\  =  \pink{ \displaystyle\int_0^a\bf \:(a + 0 - x) \{(a + 0)   - (a - x)  \}  ^{n} \: dx} \\  \\  = \displaystyle\int_0^a\bf \:(a - x). {x}^{n}  \: dx \\  \\ \displaystyle\int_0^a\bf \:(a. {x}^{n}  - x. {x}^{n} ) \: dx \\  \\  = \displaystyle\int_0^a\bf \:(a {x}^{n}  -  {x}^{n + 1} ) \: dx \\  \\  = \bf { \huge{ [ }} \frac{a {x}^{n + 1} }{n + 1}  -  \frac{ {x}^{n + 2} }{n + 2}  { \huge{ ]}} _0^a \\  \\  =  \bf \:  \frac{a. {a}^{n + 1} }{n + 1}  -  \frac{ {a}^{n + 2} }{n + 2}  - 0 + 0 \\  \\  \bf \:  =  \frac{ {a}^{n + 2} }{(n + 1)}  -  \frac{ {a}^{n + 2} }{n + 2}  \\  \\  \bf \:  =  {a}^{n + 2}  \times ( \frac{1}{n + 1}  -  \frac{1}{n + 2} ) \\  \\  \bf =  {a}^{n + 2}  \times  \{ \frac{n + 2 - n - 1}{(n + 1)(n + 2)}  \} \\  \\  \bf  =  {a}^{n + 2}  {\times  \frac{1}{(n + 1)(n + 2)} }  \\  \\  \bf  =  \frac{ {a}^{n + 2} }{(n + 1)(n +  2)}  \\  \\  \bf  = R.H.S \\  \\  \orange{ \therefore \bf \: L.H.S = R.H.S} \\  \\   \green{ \boxed{\sf \: hence \: showed}}

Answered by bhoomigupta6
6

Answer:

kha ho yaad hu ya bhul bhal gye

kindly report after read

Similar questions