Physics, asked by queen20235, 1 year ago

plz solve it
plzzzz....

Attachments:

Answers

Answered by Anonymous
1
hey mate
here's the solution
Attachments:

queen20235: okkkk....
queen20235: Byeeeeeee.........
queen20235: Good night
queen20235: and again sorry to heart u
queen20235: bye
queen20235: bye
Answered by TPS
4

|\vec{A} \times \vec{B}| = \sqrt{3} \:  \vec{A} . \vec{B}  \\  \\ |\vec{A} || \vec{B}|  \sin( \theta) = \sqrt{3}  |\vec{A} || \vec{B}|  \cos( \theta) \\  \\  \frac{ |\vec{A} || \vec{B}|  \sin( \theta)}{ |\vec{A} || \vec{B}|  \cos( \theta)}  =  \sqrt{3}  \\  \\  \tan( \theta)  =  \sqrt{3}  \\  \\\tan( \theta)  = \tan( {60}^{o} ) \\  \\  \theta = {60}^{o}

 |\vec{A} +  \vec{B}| \\  \\  =  \sqrt{ {|\vec{A} | }^{2} + { | \vec{B}|}^{2}  +2 |\vec{A} || \vec{B}| \cos( \theta) }  \\  \\ =  \sqrt{ {|\vec{A} | }^{2} + { | \vec{B}|}^{2}  +2 |\vec{A} || \vec{B}| \cos( {60}^{o} ) }   \\  \\ =  \sqrt{ {|\vec{A} | }^{2} + { | \vec{B}|}^{2}  +2 |\vec{A} || \vec{B}|  \times  \frac{1}{2}  }   \\  \\ =  \sqrt{ {|\vec{A} | }^{2} + { | \vec{B}|}^{2}  + |\vec{A} || \vec{B}| }   \\  \\  ={({|\vec{A} | }^{2} + { | \vec{B}|}^{2}  + |\vec{A} || \vec{B}|)}^{ \frac{1}{2} }

\boxed{ \red{ \bold{Answer:\ (4)\ {({|\vec{A} | }^{2} + { | \vec{B}|}^{2}  + |\vec{A} || \vec{B}|)}^{ \frac{1}{2} } }}}
Similar questions