Math, asked by BhumiOswal, 7 months ago

Plz solve it
Std 10th Maharashtra board​

Attachments:

Answers

Answered by rohitkhajuria90
1

bring the equation to the form ax²+bx+c=0, where a, b, and c are coefficients. plug these coefficients in the formula: (-b±√(b²-4ac))/(2a)

Q. 1

a)

 {x}^{2}  - 4x  - 3 = 0

Here

a=1,b=-4,c=-3

Putting values in the formula

 \frac{-b±√(b²-4ac)}{2a} \\  =  \frac{ - ( - 4)± \sqrt{ {( - 4)}^{2}  - 4 \times 1 \times ( - 3)} }{2 \times 1}  \\  =  \frac{4 ± \sqrt{16 + 12}  }{2}  \\  =  \frac{4 ± \sqrt{28}  }{2}  \\  =  \frac{4 ± \sqrt{4 \times 7}  }{2} \\  =  \frac{4 ± 2 \sqrt{7}  }{2}   \\ we \: have \: the \: roots \\  2 +  \sqrt{7}  \: and \:  2 -  \sqrt{7}

b)

2 {x}^{2}  + 5x - 2 = 0 \\

Here,

a=2,b=5,c=-2

Putting values in the formula

 \frac{-b±√(b²-4ac)}{2a} \\  =  \frac{ - 5± \sqrt{ {5}^{2} - 4 \times 2 \times ( - 2) } }{2 \times 2}  \\  =   \frac{ - 5± \sqrt{ 25 + 16 } }{4} \\  = \frac{ - 5± \sqrt{ 41} }{4}

Roots are

\frac{ - 5 + \sqrt{ 41} }{4}  \: and \: \frac{ - 5 -  \sqrt{ 41} }{4}

Q. 2

a)

 {x}^{2}  + 2x - 24\\  {x}^{2}  - 4x + 6x - 24 \\  x(x - 4) + 6(x - 4) \\  (x + 6)(x - 4)

b)

3 {x}^{2}  + 5x + 2 \\  3 {x}^{2}  + x + 2x + 2 \\ 3x(x + 1) + 2(x + 1) \\ (3x + 2)(x + 1)

c)

2 {x}^{2}  - 5x - 12 \\ 2 {x}^{2}  - 8x + 3x - 12 \\ 2x(x - 4) + 3(x - 4) \\ (2x + 3)(x - 4)

Similar questions