Math, asked by Anonymous, 1 year ago

plz solve it
Urgently

Attachments:

Answers

Answered by naincy59
4
Solution =taking LHS,
 \frac{ \tan(a) +  \tan(b)  }{ \tan(a) -  \tan(b)  }  \\    \\   =  \frac{ \sin(a) }{ \cos(a) }  +  \frac{ \sin(b) }{ \cos(b) } \div  \frac{ \sin(a) }{ \cos(a) }  -  \frac{ \sin(b) }{ \cos(b) }  \\  =  \frac{ \sin(a) \cos(b) +  \cos(a)  \sin(b)   }{ \cos(a) \cos(b)  }   \div   \frac{ \sin(a) \cos(b)  -  \cos(a) \sin(b)   }{ \cos(a) \cos(b)  }  \\  =  \frac{ \sin(a + b) }{ \sin(a - b) }  \\
RHS

Here proved✌✌✌

Hope it will help you✌✌✌✌


naincy59: mention not
naincy59: How do you delete message ?
naincy59: waseem explain me
Anonymous: mene nahi kiye
Anonymous: moderator ne kar diye
naincy59: ye moderator kya h
naincy59: Happy new year waseem
Anonymous: same to you dear ❤️❤️
Answered by Avengers00
4
<b>
\large\red{Question:}
\frac{tan\: A+ tan\: B}{tan\: A-tan\: B}=\frac{Sin\: (A+B)}{Sin\: (A-B)}

\huge\red{Answer:}
\large{\blue{\underline{\blue{LHS=}}}}

\frac{tan\: A+ tan\: B}{tan\: A-tan\: B}

Since  tan\: \theta = \frac{Sin\: \theta}{Cos\: \theta}

= \frac{\frac{Sin\: A}{Cos\: A}+ \frac{Sin\: B}{Cos\: B}}{\frac{Sin\: A}{Cos\: A}- \frac{Sin\: B}{Cos\: B}}

= \frac{Sin\: A.Cos\: B+ Cos\: A.Sin\: B}{Sin\: A.Cos\: B- Cos\: A.Sin\: B}

We have,
Sin\: (A+B) = Sin\: A.Cos\: B+ Cos\: A.Sin\: B &
Sin\: (A-B) = Sin\: A.Cos\: B - Cos\: A.Sin\: B

=> \frac{Sin\: (A+B)}{Sin\: (A-B)}

\large{\blue{\underline{\blue{=RHS}}}}

✓✓✓

\huge\boxed{\texttt{\fcolorbox{red}{aqua}{Keep\: it\: Mello}}}

Similar questions