Math, asked by lal76, 6 months ago

plz solve karo yar !! ​

Attachments:

Answers

Answered by BrainlyEmpire
211

Hey\: there!\\ \\ Solution:\\ \\ \int \:sec^{4}x .dx\\ \\ \int\: sec^{2}x . sec^{2}x .dx\\ \\ Using\: Identity :\\ \\ sec^{2}x\: =\: 1 + tan^{2}x \\ \\ We \:get:\\ \\ \int\: (1 + tan^{2}x ) sec^{2}x .dx\\ \\ Put \:tanx = t....(1) \\ \\ sec^{2}x dx = dt\\ \\ I = \int \: ( 1 + t^{2}) dt\\ \\ = \int\: 1.dt + \int\: t^{2} .dt\\ \\ = t +\dfrac{ t^{3}}{3} + c \\ \\ Using \:equation\: (1) \\ \\ tanx + \dfrac{1}{3} tan^{3}x + C \\ \\ Where \:C\: is\: the \:Arbitrary\: Constant.

______________________________________________________

Answered by BabeHeart
116

Answer:

   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\large\sf \blue{Answer:-}

\sf \: Let \:  I =  \int\:sec^4  \: x\:  \:  dx

 \sf= \int sec^2 x. sec^2 \:   \: x  \:  \: dx

 \sf \: = \int ( 1 + tan^2 x ) . sec^2 \:  \:  x  \:  \: dx

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \sf \pink{putting  \: tan \:  x  \: = t}

 \sf\implies sec^2  \: xdx \:  = dt

 \sf\therefore I = \int(1 + t^2) dt

 \sf= \int \: dt + \int t^2 dt

 \sf =  \: t \:  +  { \frac{t}{3} }^{3}  \:  + c

 \sf= tan \:  x +  \frac{1}{3}  \:  tan^2  \: x + c  \: [  \because \: t \:  =  \: tan \: x]

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions