Math, asked by mdyahiya2000, 10 months ago

plz solve only correct answer
don't copy any where​

Attachments:

Answers

Answered by CharmingPrince
0

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆Prove \ that : \\\displaystyle{\frac{sin \theta - cos \theta + 1}{sin \theta + cos \theta -1}}= \frac{1}{sec \theta - tan \theta}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\boxed{\red{\bold{Solving \ RHS:}}}

\purple{\implies \displaystyle \frac{1}{sec \theta - tan \theta}}

\green{\boxed{\implies{\boxed{RHS = sec \theta + tan \theta}}}}

\boxed{\red{\bold{Solving\ LHS:}}}

\purple{\implies \displaystyle \frac{sin \theta - cos \theta + 1}{sin \theta + cos \theta -1}}

\boxed{\red{\bold{Dividing \ by \ cos \theta:}}}

\red{\implies}\displaystyle \frac{\frac{sin \theta - cos \theta +1}{cos \theta}}{\frac{sin \theta + cos \theta -1}{cos \theta}}

\red{\implies}\displaystyle \frac{\frac{sin \theta}{cos \theta} - \frac{cos \theta}{cos \theta}+ \frac{1}{cos \theta}}{\frac{sin \theta}{cos \theta} + \frac{cos \theta}{cos \theta} - \frac{1}{cos \theta}}

\red{\implies}\displaystyle \frac{tan \theta - 1 + sec \theta}{tan \theta + 1 - sec \theta}

\blue{\left( \because \displaystyle \frac{sin \theta}{cos \theta} = tan \theta \ and \ \frac{1}{cos \theta} = sec \theta \right)}

\red{\implies}\displaystyle \frac{tan \theta + sec \theta -1}{1 - sec \theta + tan \theta}

\red{\implies}\displaystyle \frac{tan \theta + sec \theta - (sec^2 \theta - tan^2 \theta)}{1-sec \theta + tan \theta}

\blue{(\because sec^2 \theta - tan^2 \theta = 1)}

\red{\implies}\displaystyle \frac{tan \theta + sec \theta -[(sec \theta + tan \theta)(sec \theta - tan \theta)]}{1 - sec \theta + tan \theta}

\red{\implies}\displaystyle \frac{tan \theta + sec \theta[1-(sec \theta -tan \theta)]}{1 - sec \theta + tan \theta }

\red{\implies}\displaystyle \frac{tan \theta + sec \theta(1-sec \theta + tan \theta)}{1- sec \theta + tan \theta}

\green{\boxed{\implies{\boxed{LHS = sec \theta + tan \theta}}}}

\Large{\overbrace{\underbrace{\boxed{ \red{H} \blue{e} \green{n} \pink{c} \purple{e} \ LHS =RHS }}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Answered by sakshisingh27
2

Step-by-step explanation:

hope it will be helpful to you

Similar questions