Math, asked by khushirana1723, 1 year ago

plz solve part 1 of this question
..​

Attachments:

Answers

Answered by Anonymous
4

Answer:

\large\bold\red{\frac{2 ln(2) }{\pi} }

Step-by-step explanation:

Given,

(i)\lim_{x \to \frac{\pi}{2} } \frac{ {2}^{ -  \cos(x) }  - 1}{x(x -  \frac{\pi}{2}) }

Now,

It can also be simplified as ,

\lim_{(x  -  \frac{\pi}{2} )\to 0 } \frac{ {2}^{ -  \cos(x)  }  - 1}{x(x -  \frac{\pi}{2}) }

Now,

let us consider,

x -  \frac{\pi}{2}  = h \\  \\  =  > x =  \frac{\pi}{2}  + h

Now,

Replacing the terms,

we get,

 = \lim_{h \to 0 }  \frac{ {2}^{ -  \cos( \frac{\pi}{2}  + h) }  - 1}{( \frac{\pi}{2}  + h)( \frac{\pi}{2}  + h -  \frac{\pi}{2} )}  \\  \\  = \lim_{h \to 0 } \frac{ {2}^{ \sin(h)  } - 1 }{h( \frac{\pi}{2}  + h)}

Now,

Multiplying the numerator and denominator by ( sin h ),

we get,

 = \lim_{h \to 0 } \frac{ {2}^{ \sin(h) }  - 1}{ \sin(h) }  \times  \frac{ \sin(h) }{h( \frac{\pi}{2}  + h)}  \\  \\  = \lim_{h \to 0 } \frac{ {2}^{ \sin(h) }  - 1}{ \sin(h) }  \times\lim_{h \to 0 } \: \frac{ \sin(h) }{h( \frac{\pi}{2}  + h)}

But,

we know that,

\lim_{x \to 0 } \frac{ {a}^{x} - 1 }{x}  =  ln(a)

Therefore,

we get,

 =  ln(2)  \times \lim_{h \to 0 } \frac{ \sin(h) }{h( \frac{\pi}{2} + h) }

Also,

we know that,

\lim_{x \to 0 } \frac{ \sin(x) }{x}  = 1

Therefore,

according to this,

we get,

 =  ln(2)  \times \lim_{h \to 0 } \frac{1}{( \frac{\pi}{2}  + h)}  \\  \\  =  \frac{ ln(2) }{ \frac{\pi}{2} }  \\  \\  =   \bold{\frac{2 ln(2) }{\pi} }

Similar questions