Math, asked by khushirana1723, 1 year ago

plz solve part 4 of this question...​

Attachments:

Answers

Answered by Anonymous
16

Answer:

\large\bold\red{ln(a)  ln(b) }

Step-by-step explanation:

Given,

(iv)\lim_{x \to 0 } \frac{ {(ab)}^{x}  -  {a}^{x} -  {b}^{x} + 1  }{ {x}^{2} }  \\  \\

Further simplifying,

we get,

 = \lim_{x \to 0 }  \frac{ {a}^{x}  {b}^{x}  -  {a}^{x}  -  {b}^{x} + 1 }{ {x}^{2} }

Now,

doing factorisation,

we get,

 =  \lim_{x \to 0 } \frac{ {a}^{x} ( {b}^{x}  - 1) - 1( {b}^{x}  - 1)}{ {x}^{2} }  \\  \\  = \lim_{x \to 0 } \frac{( {a}^{x}  - 1)( {b}^{x}  - 1)}{ {x}^{2} }  \\  \\  = \lim_{x \to 0 } \frac{ {a}^{x}  - 1}{x}  \times \lim_{x \to 0 } \frac{ {b}^{x}   - 1}{x}

But,

we know that,

\lim_{h \to 0 } \frac{ {m}^{h}  - 1}{h}  =  ln(m)

Therefore,

we get,

 =   \bold{ln(a)  ln(b) }

Similar questions