Math, asked by khushirana1723, 11 months ago

plz solve part 6 of this question​

Attachments:

Answers

Answered by Anonymous
9

Answer:

\large\bold\red{4 \sqrt{2}  \times  ln(5) \times   ln(3) }

Step-by-step explanation:

Given,

(vi) \lim_{x\to0}</p><p> \: \frac{ {15}^{x}  -  {5}^{x}  -  {3}^{x}  + 1}{ \sqrt{2} -  \sqrt{1 +  \cos(x) }  }

After simplifying,

We get,

 = \lim_{x\to0} \frac{ {5}^{x} ( {3}^{x}  - 1) - 1( {3}^{x} - 1) }{ \sqrt{2} -  \sqrt{1 +  \cos(x) }  }  \\  \\

But,

we know that,

\bold{1 +  \cos(2 \alpha )  = 2 { \cos}^{2}  \alpha }

Therefore,

we get,

= \lim_{x\to0}</p><p> \frac{( {5}^{x}  - 1)( {3}^{x}  - 1)}{ \sqrt{2} (1 -  \cos\frac{x}{2} ) } </p><p> \\  \\

Now,

multiplying and dividing the numerator and denominator by {x}^{2},

we get,

 = \lim_{x\to0} (\frac{ {5}^{x}  - 1}{x}) ( \frac{ {3}^{x} - 1 }{x}) ( \frac{ {x}^{2} }{ \sqrt{2} (1 -  \cos \frac{x}{2} ) } )</p><p>

But,

we know that,

\bold{\lim_{x\to0} (\frac{ {a}^{x} - 1 }{x} ) =  ln(a)}  \\  \\ and \\  \\\bold{ 1 -  \cos( \frac{x}{2}  )  = 2 { \sin}^{2}  \frac{x}{4} }

Therefore,

Applying the formula and pUtting the values,

we get,

 =  ln(5)  ln(3) \lim_{x\to0}</p><p> \frac{ {x}^{2} }{2 \sqrt{2} { \sin}^{2}  \frac{x}{4}  }  \\  \\  =  ln(5)  ln(3) \lim_{x\to0}</p><p>  \frac{ {x}^{2} }{2 \sqrt{2}  {( \sin \frac{x}{4} ) }^{2} }  \\  \\  =  ln(5)  ln(3) \lim_{x\to0}</p><p> \frac{ {x}^{2} }{2 \sqrt{2}  \frac{ {( \sin \frac{x}{4} ) }^{2} }{ {( \frac{x}{4}) }^{2} }  \times  {( \frac{x}{4}) }^{2} }

But,

we know that,

\bold{\lim_{x\to0} \frac{ \sin(x) }{x}  = 1}</p><p>

Therefore,

we get,

 =  ln(5)  ln(3) \lim_{x\to0}</p><p>  \frac{ {x}^{2} }{2 \sqrt{2}  \times  \frac{ {x}^{2} }{16} }  \\  \\  =  \frac{16 \times  ln(5)  \times  ln(3) }{2 \sqrt{2} }  \\  \\  =  \bold{4 \sqrt{2}  \times  ln(5) \times   ln(3) }

Similar questions