Math, asked by aryanpratapsingh798, 28 days ago

plz solve plz solve plx solve plz solve fast​

Attachments:

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

The given equation of lines are

\rm :\longmapsto\:\dfrac{x - 3}{3}  = \dfrac{y - 8}{ - 1}  = \dfrac{z - 3}{1}  -  -  - (1)

and

\rm :\longmapsto\:\dfrac{x + 3}{ - 3}  = \dfrac{y + 7}{2}  = \dfrac{z - 6}{4}  -  -  - (2)

Now,

Line (1) passes through the point (3, 8, 3) and having direction ratios (3, - 1, 1).

In Vector form, it can be represented as

\rm :\longmapsto\:\vec{a_1} = 3\hat{i} + 8\hat{j} + 3\hat{k}

and

\rm :\longmapsto\:\vec{b_1} = 3\hat{i}  - \hat{j} + \hat{k}

Also,

Line (2) passes through the point (- 3, - 7, 6) and having direction ratios (- 3, 2, 4).

In Vector form, it can be represented as

\rm :\longmapsto\:\vec{a_2} =  - 3\hat{i}  -  7\hat{j} + 6\hat{k}

and

\rm :\longmapsto\:\vec{b_1} =  - 3\hat{i}  + 2\hat{j} + 4\hat{k}

Now,

Consider,

 \red{\rm :\longmapsto\:\vec{a_2} -\vec{a_1}}

\rm \:  =  \:  - 3\hat{i} - 7\hat{j} + 6\hat{k} - 3\hat{i} - 8\hat{j} - 3\hat{k}

\rm \:  =  \:  - 6\hat{i} - 15\hat{j} + 3\hat{k}

Now,

Consider,

 \red{\rm :\longmapsto\:\vec{b_1} \times \vec{b_2}}

\rm \:  =  \:  \:  \: \begin{gathered}\sf \left | \begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\3& - 1& 1\\ - 3&2& 4\end{array}\right | \end{gathered}

\rm \:  =  \:  - 6\hat{i} - 15\hat{j} + 3\hat{k}

Therefore,

 \red{\rm :\longmapsto\: |\vec{b_1} \times \vec{b_2}|}

\rm \:  =  \:  \sqrt{ {( - 6)}^{2} +  {(15)}^{2} +  {(3)}^{2} }

\rm \:  =  \:  \sqrt{36 + 225 + 9}

\rm \:  =  \:  \sqrt{270}

Now, we know that,

Shortest distance between two skew lines is given by

 \red{\rm :\longmapsto\:S.D. \:  = \dfrac{ | \: (\vec{a_2} -\vec{a_1}).(\vec{b_1} \times \vec{b_2})  \: |}{ |\vec{b_1} \times \vec{b_2}| } }

So, on substituting all these values, we get

\rm \:  =  \: \dfrac{ |(\:  - 6\hat{i} - 15\hat{j} + 3\hat{k}) \: .\: ( - 6\hat{i} - 15\hat{j} + 3\hat{k}) \: | }{ \sqrt{270} }

\rm \:  =  \: \dfrac{ |36 + 225 + 9| }{ \sqrt{270} }

\rm \:  =  \: \dfrac{ 270 }{ \sqrt{270} }

\rm \:  =  \:  \sqrt{270}  \: units

Hence,

 \boxed{ \bf{ \: Shortest \: Distance \: between \: lines \: is \:  \sqrt{270} \: units}}

Additional Information :-

Let us consider two parallel lines,

\rm :\longmapsto\:\vec{r} = \vec{a_1} +  \alpha  \: \vec{b}

and

\rm :\longmapsto\:\vec{r} = \vec{a_2} +   \beta   \: \vec{b}

then shortest distance between two parallel lines is

\rm :\longmapsto\:S.D = \dfrac{ |(\vec{a_2} -\vec{a_1}) \times \vec{b}| }{ |\vec{b}| }

Similar questions