plz solve Q.14 .... no spamming plz
Answers
Answer:
✌hope it helps u✌️
Step-by-step explanation:
Given:
In ΔABC, we have
AD ⊥BC
BD = 3CD
In right angle triangles ADB and ADC, we have
AB²= AD² + BD²...(i)
AC² = AD² + DC² ...(ii) [By Pythagoras theorem]
Subtracting equation (ii) from equation (i), we get
AB² - AC² = BD² - DC²
= 9CD² - CD² [∴ BD = 3CD]
= 9CD² = 8(BC/4)² [Since, BC = DB + CD = 3CD + CD = 4CD]
Therefore, AB² - AC² = BC²/2
⇒ 2(AB² - AC²) = BC²
⇒ 2AB² - 2AC² = BC²
∴ 2AB² = 2AC² + BC².
Given :
AD ⊥ BC
BD = 3CD
To Prove :
2AB² = 2AC² + BC²
Proof :
we have BD = 3CD
BC = BD + CD
BC = 3CD + CD
BC = 4CD
CD = 1/4 BC ⠀⠀⠀⠀⠀⠀⠀......(1)
In ∆ADB, ∠ADB = 90°
so using pythagoras theorem,
AB² = AD² + BD² ⠀⠀⠀......(2)
Similarly,
In ∆ADC, ∠ADC = 90°
using pythagoras theorem,
AC² = AD² + CD² ⠀⠀⠀......(3)
On subtracting (3) and (2), we get
AB² - AC² = AD² + BD² + AD² + CD²
AB² - AC² = BD² + CD²
AB² - AC² = [(3CD)² - (CD²)] (∵ BD = 3CD)
AB² - AC² = 9CD² - CD²
AB² - AC² = 8CD²
AB² - AC² = 8 × (1/4 BC)² ⠀⠀[using (1) ]
AB² - AC² = 8 × 1/16 BC²
AB² - AC² = 1/2BC²
2(AB² - AC²) = BC²
2AB² - 2AC² = BC²