Math, asked by harsha116, 1 year ago

Plz solve question 33 and 34......correct answer will be marked as brainliest✌✌✌

Attachments:

Answers

Answered by guptaramanand68
1
33:
 \sin(x)  +  \csc(x)  = 2
squaring both sides,

  \sin^{2} (x) + 2 \sin(x)   \csc(x)  +  \csc^{2} (x)  = 4 \\
Since, sin(x)=1/cosec(x). Therefore sin(x)×cosec(x)=1

 \sin^{2} (x) + 2 +  \csc^{2} (x) = 4 \\  \sin^{2}(x) +  \csc^{2} (x)   = 2

34:

x = b \sin(k)  + a \cos(k)  \\  {x}^{2}  =  {b}^{2}  \sin^{2} (k)  + 2ab \sin(k)  \cos(k)  +  {a}^{2}  \cos ^{2} (k)
y = a \sin(k)  - b \cos(k)  \\  {y}^{2}  =  {a}^{2}  \sin^{2} (k)  - 2ab \sin(k)  \cos(k)  +  {b}^{2}  \cos ^{2} (k)
So,

x^{2}  +  {y}^{2}  =  {b}^{2}  \sin ^{2} (k)  +  {a}^{2}  \cos^{2} (k)  +  {a}^{2} \sin^{2} (k)   +  {b}^{2}  \cos^{2} (k)
 {x}^{2}  +  {y}^{2}  =   \sin ^{2} (k) ({a}^{2}  +  {b}^{2} ) +  \cos^{2} (k)( {a}^{2}   +  {b}^{2} )
 {x}^{2}  +  {y}^{2}  = ( {a}^{2}  +  {b}^{2} )( \sin^{2} (k)  +  \cos^{2} (k) )

As
 \sin^{2} (x)  +  \cos^{2} (x)  = 1

Therefore,

 {x}^{2}  +  {y}^{2}  =  {a}^{2}  +  {b}^{2}

guptaramanand68: You are welcome.
Similar questions