Math, asked by archismandey70, 4 months ago

Plz solve sum no. 17​

Attachments:

Answers

Answered by dhroov2917
2

Answer:

angle 1 and3 are of 48° vertically opposite Angle

angle1 +angle4=180° linear pair

48°+x=180

x=180°-48°

x=132°

angle4 =132°

angle2=angle4=132° vertically opposite Angle

Answered by cutie08
7

 \huge \mathcal \red {\underline{\underline{A}}}  \huge \mathcal \green {\underline{\underline{N}}}  \huge \mathcal \pink {\underline{\underline{S}}}  \huge \mathcal \blue {\underline{\underline{W}}}  \huge \mathcal \orange {\underline{\underline {E}}}  \huge \mathcal \purple {\underline{\underline{R}}}

Given :

 \angle \: 1 = 48°

To find :

 \angle \: 2, \: \angle \: 3, \: \angle \:4

Solution :

 \angle \:2 :-

Since, BD is a straight line,

 \angle \: AOB + \angle \: AOD = 180°

 \angle \: 1 + \angle \:2 = 180°

 48° + \angle \:2 = 180°

 \angle \:2 = 180° - 48°

 \angle \:2 = 132°

 \\

 \angle \:3 :-

 \angle \:3 = \angle \: 1 \: \: \: [Vertically \: opposite \: angle]

 \angle \:3 = 48°

 \\

 \angle \: 4 :-

 \angle \:4 = \angle \:2 \: \: \: [Vertically \: opposite \: angle]

 \angle \:4 = 132°

 \\

 \implies \textbf {Hence, the measure of all angles are } :

 \angle \:1 = 48°

 \angle \:2 = 132°

 \angle \:3 = 48°

 \angle \:4 = 132°

____________________☆

Similar questions