Math, asked by MissAdorabIe, 2 months ago

Plz solve the above attached fig . maths ❤️❤️​

Attachments:

Answers

Answered by GelatinousCherry
4

 {  \large{ \underline{ \underline{ \rightarrow{ \mathsf{solution}}}}}}

{ \large{ \underline{ \underline{ \rightarrow{ \mathtt{given}}}}}}

{ \mathsf{ \rightarrow{if \:  \frac{ \cos {}^{4 \: } \alpha \:  }{ \cos{}^{4}  \:  \:   \beta } +  \frac{ \sin {}^{4}   \alpha }{ \sin {}^{2}  \beta }  = 1 \:   }}} \\  { \mathsf{prove \: that}}

{ \tiny{ \mathsf{ \rightarrow{ \frac{ \cos {}^{4}  \alpha }{ \cos {}^{2}   \beta }  = 1  -  \frac{ \sin {}^{1}  \alpha  }{ \sin {}^{2}   \beta }  =  \frac{ \sin {}^{2}  \beta -  \sin {}^{4}  \alpha    }{ \sin {}^{2} \beta  } }}}}

{ \tiny{ \mathsf{ \rightarrow{ \frac{ \cos {}^{4} \alpha   }{ \cos {}^{2}  \beta } \:  =  \frac{ \sin {}^{2}  \beta   \:  =  \:  \sin  {}^{4}  \alpha   }{ \sin {}^{2}  \beta } }}}}

{ \tiny{ \mathsf{ \rightarrow{ \ \cos {}^{4}  \alpha  \sin {}^{2} \beta  = ( \sin {}^{2} \beta  \sin {}^{4}  \alpha ) \cos {}^{2}  \beta   }}}}

{ \tiny{ \mathsf{ \rightarrow{(1 -  \sin {}^{2}  \alpha ) \sin {}^{2}   \beta  =  (\sin {}^{2}   \beta   -   \sin {}^{4} \alpha)  (1 -  \sin {}^{2}  \beta )}}}}

 { \tiny{ \mathsf{ \rightarrow{(1 +  \sin {}^{4} \alpha =  - 2   \sin {}^{2}   \alpha) \sin {}^{2} \beta  =  \sin {}^{2}  \beta -  \sin {}^{4}   \alpha  -  \sin {}^{4}   \beta   +  \sin {}^{4}  \sin {}^{2}  \beta     }}}}

{ \tiny{ \mathsf{ \rightarrow{ \sin {}^{2}  \beta  +  \sin {}^{4} \alpha   \sin {}^{2}   \beta  -  \sin {}^{2}  \beta  \sin {}^{2}   \alpha  \sin {}^{2}  \beta  }}}}

{ \tiny{ \mathsf{  =  \sin {}^{2} \beta  -  \sin {}^{4}  \alpha  -  \sin {}^{4}  \beta  +  \sin {}^{4} \alpha  \sin {}^{2} \beta   }}}

{ \tiny{ \boxed{ \mathsf{ \rightarrow{ \sin {}^{4}  \alpha  +  \sin {}^{4}  \beta  = 2 \sin {}^{2} \alpha  \sin  {}^{2} \beta   }}}}}

(i) (ii)

Refer Attachment

Hope it helps u!!

Attachments:
Similar questions