Math, asked by abhishekpal2104, 4 months ago

Plz solve the above question​

Attachments:

Answers

Answered by yatindhawan
3

Answer:

13/21

hope you get the solution

Attachments:
Answered by MagicalBeast
10

Given :

4tanθ = 3

To find :

\sf Value  \: of  \:  \:  \dfrac{4 \sin( \theta) \:  -  \: \cos( \theta)  \: + 1}{4 \sin( \theta) \:   +   \: \cos( \theta)  \:  -  1}

Identity used :

 \sf \bullet \:  \dfrac{ \sin( \theta) }{ \cos(\theta) } \: =   \:   \tan( \theta)

 \sf \bullet \:  \  \sec^{2} (\theta) \: =   \:   \tan^{2} ( \theta) + 1

Solution :

According to question,

4tanθ = 3

➝ tanθ = 3/4

________________________________

We know that sec²θ = tan²θ + 1

\sf \implies \:  \  \sec^{2} (\theta) \: =   \:    \bigg( \dfrac{3}{4}  \bigg)^{2}  + 1

\sf \implies \:  \  \sec^{2} (\theta) \: =   \:     \dfrac{9}{16}   + 1

\sf \implies \:  \  \sec^{2} (\theta) \: =   \:     \dfrac{(9 \times 1) + (1 \times 16)}{16}

\sf \implies \:  \  \sec^{2} (\theta) \: =   \:     \dfrac{(9 + 16)}{16}  =  \dfrac{25}{16}

\sf \implies \:  \  \sec (\theta) \: =   \:     \sqrt{\dfrac{25}{16}  }

\sf \implies \:  \  \sec (\theta) \: =   \:      \dfrac{5}{4}

________________________________

\dfrac{4 \sin( \theta) \:  -  \: \cos( \theta)  \: + 1}{4 \sin( \theta) \:   +   \: \cos( \theta)  \:  -  1}

  • Divide numerator and denominator by cosθ

 \sf \implies \: \dfrac{ \dfrac{ \: 4 \sin( \theta) \:  -  \: \cos( \theta)  \: + 1 \:  \:}{ \cos( \theta) }  }{ \:  \dfrac{4 \sin( \theta) \:   +   \: \cos( \theta)  \:  -  1 \:}{ \cos( \theta) }  }

 \sf \implies \: \dfrac{ \dfrac{ \: 4 \sin( \theta) }{ \cos( \theta) }  -  \dfrac{ \cos( \theta) }{ \cos( \theta) }  +  \dfrac{1}{ \cos( \theta) }  }{ \:  \dfrac{4 \sin( \theta) \:   \:}{ \cos( \theta) }  + \dfrac{ \cos( \theta) }{ \cos( \theta) }   -   \dfrac{1}{ \cos( \theta) } }

\sf \implies \: \dfrac{ \: 4  \tan( \theta)  -  1 +   \sec( \theta)   }{4  \tan( \theta)   +  1  -    \sec( \theta) }

Now , put value of 4tanθ, secθ

\sf \implies \: \dfrac{ \: 3 -  1 +    \dfrac{5}{4}  }{ \: 3   +  1  -  \dfrac{5}{4} }

\sf \implies \: \dfrac{ \: 2+    \dfrac{5}{4}  }{ \: 4 -    \dfrac{5}{4} }

Take LCM in numerator and denominator

\sf \implies \: \dfrac{   \dfrac{(2 \times 4) + (5 \times 1)}{4}  }{ \:  \dfrac{(4 \times 4) - (5 \times 1)}{4} }

\sf \implies \: \dfrac{   \dfrac{8 + 5 }{4}  }{ \:  \dfrac{16 - 5}{4} }

\sf \implies \: \dfrac{   \dfrac{13}{4}  }{ \:  \dfrac{11}{4} }

\sf \implies \: \dfrac{   13  }{ \:  11 }

________________________________

ANSWER : 13/11


TheValkyrie: Awesome!
Similar questions