Math, asked by Ayushasutkar, 1 year ago

Plz solve the following:

Attachments:

Shanaya42228: .....
Ayushasutkar: What?????

Answers

Answered by siddhartharao77
4
Note: I am writing theta as A because It is difficult for me to write theta always.


LHS:

Given cosec A - sin A = a^3

 \frac{1}{sinA} - sinA = a^3

 \frac{1 -sin^2A}{sinA} = a^3

 \frac{cos^2A}{sinA} = a^3

 \frac{ cos^{ \frac{2}{3} } A}{ sin^{ \frac{1}{3} }A } = a

 \frac{ cos^{ \frac{4}{3} }A }{ sin^{ \frac{2}{3} }A } = a^2 ------- (1)



Given secA - cosb = b^3.

 \frac{1}{cosA} - cosA = b^3

 \frac{1-cos^2A}{cosA} = b^3

 \frac{sin^2A}{cosA} = b^3

 \frac{sin^ \frac{4}{3} A}{cos^ \frac{2}{3} A} = b^2  --------- (2)


Now,

a^2 * b^2 =  \frac{cos^ \frac{4}{3} A}{sin^ \frac{2}{3} A} *  \frac{sin^ \frac{4}{3} A }{cos^ \frac{2}{3} A}

                      = sin^ \frac{2}{3} A cos^ \frac{2}{3} A.




a^2 + b^2 =  \frac{cos^ \frac{4}{3}A }{sin^ \frac{2}{3}A } +  \frac{sin^ \frac{4}{3} A}{cos^ \frac{2}{3} A}

                         = \frac{cos^2A + sin^2A}{sin^ \frac{2}{3} A cos^ \frac{2}{3}A }

                        =  \frac{1}{sin^ \frac{2}{3} A cos^ \frac{2}{3}A } .



Now,

RHS:


a^2b^2(a^2 + b^2) = sin^ \frac{2}{3} A * cos^ \frac{2}{3} A *   \frac{1}{sin^ \frac{2}{3} A * cos \frac{2}{3} A}


                                       = 1.




LHS = RHS.


Hope this helps!

siddhartharao77: :-)
Similar questions