Math, asked by kauravneet2001, 3 months ago

Plz solve the following equation by substitution method​

Attachments:

Answers

Answered by Seafairy
84

Given :

  • \sf \dfrac {x}{2}+\dfrac{2y}{3}=-1
  • \sf x - \dfrac{y}{3}=3

To Find :

  • Solve the equations by using substition method.

Solution :

Simplifying the equations,

\begin{array}{c|c}\sf \dfrac {x}{2}+\dfrac{2y}{3}=-1& \sf x - \dfrac{y}{3}=3 \\\\\sf \dfrac{3x+4y}{6} =-1&\sf\dfrac{3x-y}{3}=3\\\\\sf 3x+4y=-6 ...(1)&\sf  3x-y=9 ...(2)\end{array}

Calculating value of one of the variables,

\Rightarrow \sf 3x-y=9\\

\Rightarrow \sf -y=9-3x\\

\Rightarrow \sf y = 3x-9 ...(3)

Substituting eqn(3) in eqn (1),

\longrightarrow \sf 3x+4(3x-9)=-6\\\\\sf \longrightarrow 3x+12x-36=-6\\\\\longrightarrow \sf 15x=-6+36\\\\\longrightarrow \sf 15x=30\\\\\longrightarrow \sf x = \dfrac{30}{15}\\\\\longrightarrow \sf \boxed{x=2}

Substitute the value of x in (2),

\longrightarrow \sf 3x-y=9\\\\\longrightarrow \sf 3(2)-y=9\\\\\longrightarrow \sf 6-y=9\\\\\longrightarrow \sf -y=9-6\\\\\longrightarrow \sf -y=3\\\\\longrightarrow \sf \boxed{y=-3}

Verifying the values in eqn(1)&(2),

{\begin{array}{c|c}\sf 3x+4y=-6&\sf 8x-y=9\\\\\sf3(2)+4(-3)=-6&\sf3(2)-(-3)=9\\\\\sf6-12=-6&\sf6+3=9\\\\\sf-6=-6&\sf9=9\end{array}}\\\\ \sf Hence\: Verified

Required Answer :

  • The value of x is \underline{\sf 2}
  • The value of y is \underline{\sf -3}
Answered by OoINTROVERToO
13

Step-by-step explanation:

x/2 + 2y/3 = -1 x - y/3 = 3

  • SIMPLiFy BoTH EQUATION

3x + 4y = −6 _(i) 3x − y = 9 _(ii)

  • SUBTRACT (i) - (ii) , we get ,

5y = -15

y = -3

  • PUTTiNG y = -3 in (i)

3x + 4(-3) = −6

3x + (-12) = −6

3x = −6 + 12

x = 2

Similar questions