Biology, asked by suraj7240, 2 months ago

plz solve.. the pair of linear equations ​

Attachments:

Answers

Answered by assingh
15

Topic :-

Linear Equations

Given :-

\dfrac{x}{a}+\dfrac{y}{b}=a+b

\dfrac{x}{a^2}+\dfrac{y}{b^2}=2

To Find :-

Values of x and y.

Methodology :-

There are many methods to do it. Here, we will be using Substitution Method.

In Substitution Method, we find value of x or y from first equation then substitute it into second equation to calculate actual values of x and y.

Solution :-

\dfrac{x}{a}+\dfrac{y}{b}=a+b

\dfrac{bx+ay}{ab}=a+b

bx+ay=ab(a+b)

bx+ay=a^2b+ab^2

bx=a^2b+ab^2-ay

x=\dfrac{a^2b+ab^2-ay}{b}

Now, substitute value of x in second equation.

\dfrac{x}{a^2}+\dfrac{y}{b^2}=2

\dfrac{xb^2+ya^2}{a^2b^2}=2

xb^2+ya^2=2a^2b^2

\dfrac{(a^2b+ab^2-ay)b^2}{b}+ya^2=2a^2b^2

(a^2b+ab^2-ay)b+a^2y=2a^2b^2

a^2b^2+ab^3-aby+a^2y=2a^2b^2

a^2y-aby=a^2b^2-ab^3

ay(a-b)=ab^2(a-b)

ay=ab^2

y=b^2

Now, substitute value of y in any equation to get value of x.

\dfrac{x}{a^2}+\dfrac{y}{b^2}=2

y=b^2

\dfrac{x}{a^2}+\dfrac{b^2}{b^2}=2

\dfrac{x}{a^2}+1=2

\dfrac{x}{a^2}=1

x=a^2

Answer :-

So, value of

x=\bold{a^2}\:\:and

y=\bold{b^2}

Similar questions