plz ..solve the ques .5 , 6 .. as soon as possible .. help me frnds .. solve on copy .. n send a pic .. plz
Attachments:
Answers
Answered by
1
for answer of 1st question see the photo
Attachments:
Answered by
1
Hello Dear !
______________________________________________________________
-------------------------------------------------------------------------------------------------------
5) By Division lemma , Find the HCF of 847 and 2160 .Check if they are co prime
______________________________________________________________
Solution :
Apply EDL on 847 and 2160
2160 = 847 X 2 + 466
Hence r ≠ 0
So , Again apply EDL on 847 and 466
847 = 466 X 1 + 381
Hence r ≠ 0
So, Again apply EDL on 466 and 381
466 = 381 X 1 + 85
Hence r ≠ 0
So , Again apply EDL on 381 and 85
381 = 85 X 4 + 41
Hence r ≠ 0
So, Again apply EDL on 85 and 41
85 = 41 X 2 +3
Hence r ≠ 0
So, Again apply EDL on 41 and 3
41 = 3 X 13 + 2
Hence r ≠ 0
So, Again apply EDL on 3 and 2
3 = 2 x 1 + 1
Hence r ≠ 0
So, Again apply EDL on 2 and 1
2 = 1 x 2 + 0
r = 0
SO the HCF is 1
So these numbers are co - prime
Note : Coprime means couple of two digits which haven't any common factor another than one
____________________________________________________________
----------------------------------------------------------------------------------------------------
6) Verify Relationship , After finding the zeros of a (x²+1) - x(a² + 1 ) = 0
____________________________________________________________
here equation => a (x²+1) - x(a² + 1 ) = 0
Quadratic polynomial = a (x²+1) - x(a² + 1 )
= ax² + a - a²x - x
= ax² - x -a²x + a [ax² -(1+a²)x + a )]
= x(ax-1) -a(ax-1)
= (ax-1) (x-a)
____________________________________________________________
So, zeros are x = 1/a and x = a
____________________________________________________________
Relation between coefficients :
-b/a = 1/a + a
-(-1 - a²) /a = 1+a² /a
1+a²/a = 1+a² /a
LHS = RHS
c/a = 1/a x a
a/a = a/a
1 = 1
LHS = RHS
____________________________________________________________
______________________________________________________________
-------------------------------------------------------------------------------------------------------
5) By Division lemma , Find the HCF of 847 and 2160 .Check if they are co prime
______________________________________________________________
Solution :
Apply EDL on 847 and 2160
2160 = 847 X 2 + 466
Hence r ≠ 0
So , Again apply EDL on 847 and 466
847 = 466 X 1 + 381
Hence r ≠ 0
So, Again apply EDL on 466 and 381
466 = 381 X 1 + 85
Hence r ≠ 0
So , Again apply EDL on 381 and 85
381 = 85 X 4 + 41
Hence r ≠ 0
So, Again apply EDL on 85 and 41
85 = 41 X 2 +3
Hence r ≠ 0
So, Again apply EDL on 41 and 3
41 = 3 X 13 + 2
Hence r ≠ 0
So, Again apply EDL on 3 and 2
3 = 2 x 1 + 1
Hence r ≠ 0
So, Again apply EDL on 2 and 1
2 = 1 x 2 + 0
r = 0
SO the HCF is 1
So these numbers are co - prime
Note : Coprime means couple of two digits which haven't any common factor another than one
____________________________________________________________
----------------------------------------------------------------------------------------------------
6) Verify Relationship , After finding the zeros of a (x²+1) - x(a² + 1 ) = 0
____________________________________________________________
here equation => a (x²+1) - x(a² + 1 ) = 0
Quadratic polynomial = a (x²+1) - x(a² + 1 )
= ax² + a - a²x - x
= ax² - x -a²x + a [ax² -(1+a²)x + a )]
= x(ax-1) -a(ax-1)
= (ax-1) (x-a)
____________________________________________________________
So, zeros are x = 1/a and x = a
____________________________________________________________
Relation between coefficients :
-b/a = 1/a + a
-(-1 - a²) /a = 1+a² /a
1+a²/a = 1+a² /a
LHS = RHS
c/a = 1/a x a
a/a = a/a
1 = 1
LHS = RHS
____________________________________________________________
simran87:
tysm brdr
Similar questions