Plz solve the question
Attachments:
Answers
Answered by
7
Given :-
To find :-
Identity to use :-
(a-b)² = a² - 2ab + b²
Substituting the values,
Identity to use :-
(a+b)² = a² + 2ab + b²
Substituting the values,
Some more identities :-
a²-b² = (a+b)(a-b)
(x+a)(x+b) = x² + x(a+b) + ab
(a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
Answered by
7
GIVEN :-
TO FIND :-
IDENTITY USED :-
- (a-b)² = a² + b² - 2ab
- (a+b)² = a² + b² + 2ab
SOLUTION :-
We have ,
Squaring both sides ,
We know , (a-b)² = a² + b² - 2ab
Here ,
- a = x
- b = 1/x
Substituting values we get ,
Now we will square both sides in the above equation.
We know , (a+b)² = a² + b² + 2ab
Here ,
- a = x²
- b = 1/x²
Substituting values we get...
Hence ,
MORE IDENTITIES :-
- (a+b)(a-b) = a² - b²
- (a+x)(a+y) = a² + (x+y)a + xy
- (a+b)³ = a³ + 3a²b + 3ab² + b³
- (a-b)³ = a³ - 3a²b + 3ab² - b³
Similar questions