Math, asked by brijesh5586, 3 months ago

Plz solve the question​

Attachments:

Answers

Answered by Dinosaurs1842
7

Given :-

x -  \dfrac{1}{x}  = 3

To find :-

 {x}^{2}  +  \dfrac{1}{ {x}^{2}} \: and \:   {x}^{4}  +  \dfrac{1}{ {x}^{4} }

Identity to use :-

(a-b)² = - 2ab +

(x -  \dfrac{1}{x})^{2}  = (x)^{2}  - 2(x)( \dfrac{1}{x}) +  (\dfrac{1}{ {x}})^{2}

Substituting the values,

 ({3})^{2}  =  {x}^{2}  - 2( \not x)( \dfrac{1}{ \not x}) +  \dfrac{1}{ {x}^{2} }

9 =  {x}^{2}  - 2 +  \dfrac{1}{ {x}^{2} }

9  + 2 =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

11 =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

Identity to use :-

(a+b)² = a² + 2ab + b²

( {x}^{2}  +  \dfrac{1}{ {x}^{2} })^{2}  = ( {x}^{2})^{2}   + 2(x)( \dfrac{1}{x}) +  (\dfrac{1}{ {x}^{2} })^{2}

Substituting the values,

 {11}^{2}  =  {x}^{4}  + 2( \not  {x}^{2} )( \dfrac{1}{ \not {x}^{2} }) +  \dfrac{1}{ {x}^{4} }

121=  {x}^{4}  + 2 +  \dfrac{1}{ {x}^{4} }

121 - 2=  {x}^{4}  +  \dfrac{1}{ {x}^{4} }

119 =  {x}^{4}  +  \dfrac{1}{ {x}^{4} }

Some more identities :-

a²-b² = (a+b)(a-b)

(x+a)(x+b) = x² + x(a+b) + ab

(a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca

Answered by Anonymous
7

GIVEN :-

 \\  \sf \: x  -  \dfrac{1}{x}  = 3 \\  \\

TO FIND :-

 \\  \sf \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {x}^{4} +  \dfrac{1}{ {x}^{4} }   \\  \\

IDENTITY USED :-

  • (a-b)² = a² + b² - 2ab

  • (a+b)² = a² + b² + 2ab

 \\

SOLUTION :-

We have ,

 \\ \underline{ \underline{  \sf \: x -  \dfrac{1}{x}  = 3}} \\

Squaring both sides ,

 \\  \implies \sf \: (x -  { \dfrac{1}{x} )}^{2}  =  {3}^{2}  \\

We know , (a-b)² = a² + - 2ab

Here ,

  • a = x
  • b = 1/x

Substituting values we get ,

 \\  \implies \sf \:  {x}^{2}  + ( { \dfrac{1}{x}) }^{2}   -  2( \cancel{x})( \dfrac{1}{ \cancel {x}} )  = 9\\  \\  \implies \sf \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }   -  2 = 9 \\  \\  \implies \sf \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 9  + 2 \\  \\  \implies \underline{ \boxed{ \bf \: {x}^{2}  +  \dfrac{1}{ {x}^{2} } = 11  } }\\

Now we will square both sides in the above equation.

 \\  \\  \implies \sf \: ( {x}^{2}  +  { \dfrac{1}{ {x}^{2} } )}^{2}  =  {11}^{2}  \\

We know , (a+b)² = a² + b² + 2ab

Here ,

  • a = x²
  • b = 1/x²

Substituting values we get...

 \\  \implies \sf \:  {( {x}^{2} )}^{2}  +   {( \dfrac{1}{ {x}^{2} } )}^{2}   + 2( \cancel{ {x}^{2} })( \dfrac{1}{  \cancel{{x}^{2}} } ) = 121 \\  \\  \implies \sf \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  + 2 = 121 \\  \\  \implies \sf \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  = 121 - 2 \\  \\  \implies  \underline{ \boxed{\bf \:  {x}^{4} +  \frac{1}{ {x}^{4} } = 119  }}

 \\

Hence ,

 \\  \boxed{ \sf \: {x}^{2}  +  \dfrac{1}{ {x}^{2} } = 11 }  \:  \:  \:  \:  \:  \:  \sf \: and \:  \:  \:  \:  \:  \:  \boxed { \sf \: {x}^{4} +  \dfrac{1}{ {x}^{4} } = 119   } \\  \\

MORE IDENTITIES :-

  • (a+b)(a-b) = a² - b²
  • (a+x)(a+y) = a² + (x+y)a + xy
  • (a+b)³ = a³ + 3a²b + 3ab² + b³
  • (a-b)³ = a³ - 3a²b + 3ab² - b³
Similar questions