Math, asked by Yivani, 10 months ago

plz solve these both questions guys.... ​

Attachments:

Answers

Answered by Anonymous
3

Step-by-step explanation:

see the attachment.,...

Attachments:
Answered by Anonymous
22

\bold{\underline{\underline{\huge{\sf{ANSWER\:1:}}}}}

Given:

  • 4u-v= 14uv
  • 3u+2v= 16uv

To find:

The value of u & v.

Explanation:

We have,

4u -v= 14uv........................(1)

3u +2v= 16uv.........................(2)

From equation (1), we get;

\frac{4u-v}{uv} =14

\frac{4}{v} -\frac{1}{u} =14.......................(3)

From equation (2),we get;

\frac{3u+2v}{uv} =16

\frac{3}{v} +\frac{2}{u} =16...........................(4)

Let us take \frac{1}{v} =R and \frac{1}{u} =M then equation becomes, we get;

→ 4R - M= 14.............................(5)

→ 3R+2M= 16.............................(6)

  • Using Substitution Method:

From equation (5), we get;

⇒ 4R -M= 14

⇒ 4R = 14 +M

⇒ R = \frac{14+M}{4} .............................(7)

Putting the value of R in equation (6), we get;

3(\frac{14+M}{4} )+2M=16

\frac{42+3M}{4} +2M=16

⇒ 42 +3M +8M = 64

⇒ 11M = 64-42

⇒ 11M = 22

⇒ M= \cancel{\frac{22}{11} }

M= 2

Putting the value of M in equation (7),we get;

⇒ R= \frac{14+2}{4}

⇒ R= \cancel{\frac{16}{4} }

R= 4

Now,

\frac{1}{v} =R

\frac{1}{v}= 4

→ v= 4

&

\frac{1}{u} =M

\frac{1}{u} =2

→ u = 2.

Thus,

The value of v is 4 & value of u is 2.

\bold{\underline{\underline{\huge{\sf{ANSWER\:2:}}}}}

Given:

\frac{5}{(x+y)} -\frac{2}{(x-y)} =-1

\frac{15}{(x+y)} -\frac{7}{(x-y)}=10

To find:

The value of x and y.

Explanation:

We have,

\frac{5}{(x+y)} -\frac{2}{(x-y)} =-1................................(1)

\frac{15}{(x+y)} -\frac{7}{(x-y)} =10..............................(2)

Let \frac{1}{x+y} =R and \frac{1}{x-y} =M,we get;

Therefore,

5R -2M =-1.............................(3)

15R -7M= 10...........................(4)

  • Using Substitution Method:

From equation (3),we get;

→ 5R -2M= -1

→ 5R = -1 +2M

→ R = \frac{-1+2M}{5} ...............................(5)

Putting the value of R in equation (4), we get;

15(\frac{-1+2M}{5} )-7M=10

\frac{-15+30M}{5} -7M =10

→ -15+30M -35M =50

→ -15 -5M =50

→ -5M= 50 +15

→ -5M = 65

→ M= \cancel{\frac{65}{-5} }

M= -13

&

Putting the value of M in equation (5),we get;

→ R= \frac{-1+2(-13)}{5}

→ R= \frac{-1+(-26)}{5}

→ R= \frac{-1-26}{5}

→ R= \frac{-27}{5}

Now,

\frac{1}{x+y} =R

⇒ x+y = R

⇒ x+ y= \frac{-27}{5}

⇒ 5x +5y= -27

⇒ 5x= -27 -5y

⇒ x= \frac{-27-5y}{5}......................(6)

&

\frac{1}{x-y} =M

⇒ x-y= -13

Putting the equation (6), in the place of x,we get;

\frac{-27-5y}{5} -y= -13

⇒ -27 -5y -5y =-65

⇒ -27-10y= -65

⇒ -10y= -65+27

⇒ -10y= -38

⇒ y= \cancel{\frac{-38}{-10} }

⇒ y= \frac{19}{5}

Putting the value of y in equation (6),we get;

⇒ x= \frac{-27-\cancel{5}(\frac{19}{\cancel{5}} )}{5}

⇒ x= \frac{-27-19}{5}

⇒ x= \frac{-46}{5}

Thus,

The value of x is -46/5 & y is 19/5.

Similar questions